Advertisements
Advertisements
प्रश्न
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
उत्तर
2, 4, 6, … are in A.P.
∴ rth term = 2 + (r – 1) 2 = 2r
6, 9, 12, … are in A.P.
∴ rth term = 6 + (r – 1) (3) = (3r + 3)
∴ 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms
= \[\displaystyle\sum_{r=1}^{n} 2r \times (3r + 3)\]
= 6\[\displaystyle\sum_{r=1}^{n}r^2 + 6\displaystyle\sum_{r=1}^{n}r\]
= `6*("n"("n" + 1)(2"n" + 1))/6 + 6("n"("n" + 1))/2`
= n(n + 1) (2n + 1 + 3)
= 2n(n + 1)(n + 2).
APPEARS IN
संबंधित प्रश्न
Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Find \[\displaystyle\sum_{r=1}^{n}r(r-3)(r-2)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find `sum_(r=1)^n (1 + 2 + 3 + ...+ r)/ r`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`.
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find `sum_(r=1)^n (1+2+3+...+r)/r`
Find `sum_(r=1)^n (1+2+3+......+r)/r`