हिंदी

Find ∑r=1n13+23+33+...+r3(r+1)2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]

योग

उत्तर

\[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]

\[\displaystyle\sum_{r=1}^{n}\frac{r^2(r+1)^2}{4} \times \frac{1}{(r+1)^2}\]

= \[\frac{1}{4}\displaystyle\sum_{r=1}^{n}r^2\]

= `1/4*("n"("n" + 1)(2"n" + 1))/6`

= `("n"("n" + 1)(2"n" + 1))/24`.

shaalaa.com
Special Series (Sigma Notation)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Sequences and Series - MISCELLANEOUS EXERCISE - 4 [पृष्ठ ६४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 4 Sequences and Series
MISCELLANEOUS EXERCISE - 4 | Q 13) | पृष्ठ ६४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×