English

Find ∑r=1n13+23+33+...+r3(r+1)2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]

Sum

Solution

\[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]

\[\displaystyle\sum_{r=1}^{n}\frac{r^2(r+1)^2}{4} \times \frac{1}{(r+1)^2}\]

= \[\frac{1}{4}\displaystyle\sum_{r=1}^{n}r^2\]

= `1/4*("n"("n" + 1)(2"n" + 1))/6`

= `("n"("n" + 1)(2"n" + 1))/24`.

shaalaa.com
Special Series (Sigma Notation)
  Is there an error in this question or solution?
Chapter 4: Sequences and Series - MISCELLANEOUS EXERCISE - 4 [Page 64]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
Chapter 4 Sequences and Series
MISCELLANEOUS EXERCISE - 4 | Q 13) | Page 64

RELATED QUESTIONS

Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.


Find \[\displaystyle\sum_{r=1}^{n} (3r^2 - 2r + 1)\].


Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]


Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3) 


Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.


Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].


Find `sum_(r=1)^n  (1+2+3+....+ r)/r`


Find n, if  `(1xx2+2xx3+3xx4+4xx5+.......+  "upto n terms")/(1+2+3+4+....+  "upto n terms") =100/3`


Find n, if `(1xx2 + 2xx3 + 3xx4 + 4xx5 + .....+ "upto n terms") / (1 + 2 + 3 + 4 +  .....+"upto n terms") = 100/3`


Find n, if  `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...... + "upto n terms")/(1 + 2 + 3 + 4 + ....+ "upto n terms") = 100/3`


Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`


Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`


Find n, if `(1xx2 + 2xx 3 + 3xx4 + 4xx5 + ...+"upto n terms")/(1 + 2 + 3 + 4 + ...+"upto n terms") = 100/3`


Find `sum_(r = 1)^n (1 + 2 + 3 + ... + r)/(r)`


Find `sum_(r=1)^n   (1 + 2 + 3 + ... + r)/r`


Find `sum_(r=1)^n (1+2+3+...+r)/r`


Find n, if `(1xx2+2xx3+3xx4+4xx5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`


Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.


Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`


Find `sum_(r = 1)^n (1 + 2 + 3 + .... + r)/r.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×