Advertisements
Advertisements
Question
Find \[\displaystyle\sum_{r=1}^{n} (3r^2 - 2r + 1)\].
Solution
\[\displaystyle\sum_{r=1}^{n}(3r^2 - 2r + 1)\]
= 3\[\displaystyle\sum_{r=1}^{n} r^2 - 2\displaystyle\sum_{r=1}^{n} r +\displaystyle\sum_{r=1}^{n} 1\]
= `3.("n"("n" + 1)(2"n" + 1))/6 - 2("n"("n" + 1))/2 + "n"`
= `"n"/2[2"n"^2 + 3"n" + 1) - 2("n" + 1) + 2]`
= `"n"/2(2"n"^2 + 3"n" + 1 - 2"n" - 2 + 2)`
= `"n"/2(2"n"^2 + "n" + 1)`.
APPEARS IN
RELATED QUESTIONS
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively, then show that: 9S22 = S3(1 + 8S1).
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Find \[\displaystyle\sum_{r=1}^{n}r(r-3)(r-2)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]
Find `sum_(r=1)^n(1 + 2 + 3 + . . . + r)/r`
Find `sum_(r=1)^n (1+2+3+....+ r)/r`
Find `sum_(r=1)^n (1+2+3+... + "r")/"r"`
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.
Find `sum_(r=1)^n (1+2+3+......+r)/r`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`