Advertisements
Advertisements
Question
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Solution
\[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]
= \[\displaystyle\sum_{r=1}^{n}\frac{r(r + 1)}{2r}\]
= \[\frac{1}{2}\displaystyle\sum_{r=1}^{n}(r + 1)\]
`= 1/2 [sum_(r=1)^n "r" + sum_(r=1)^n 1]`
= `1/2[("n"("n" + 1))/2 + "n"]`
= `"n"/4[("n" + 1) + 2]`
= `"n"/4("n" + 3)`
APPEARS IN
RELATED QUESTIONS
Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]
Find 122 + 132 + 142 + 152 + … + 202.
Find (502 – 492) + (482 –472) + (462 – 452) + .. + (22 –12).
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1xx2 + 2xx3 + 3xx4 + 4xx5 + .....+ "upto n terms") / (1 + 2 + 3 + 4 + .....+"upto n terms") = 100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find `sum_(r = 1) ^n (1+2+3+ ... + r)/(r)`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r = 1)^n (1 + 2 + 3 + ... + r)/(r)`
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find `sum_(r=1)^n (1+2+3+...+r)/r`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/ (1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r = 1)^n (1 + 2 + 3 + .... + r)/r.`