English

Find ∑r=1n1+2+3+...+rr - Mathematics and Statistics

Advertisements
Advertisements

Question

Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]

Sum

Solution

\[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]

= \[\displaystyle\sum_{r=1}^{n}\frac{r(r + 1)}{2r}\]

= \[\frac{1}{2}\displaystyle\sum_{r=1}^{n}(r + 1)\]

`= 1/2 [sum_(r=1)^n "r" + sum_(r=1)^n 1]`

= `1/2[("n"("n" + 1))/2 + "n"]`

= `"n"/4[("n" + 1) + 2]`

= `"n"/4("n" + 3)`

shaalaa.com
Special Series (Sigma Notation)
  Is there an error in this question or solution?
Chapter 4: Sequences and Series - EXERCISE 4.5 [Page 63]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×