Advertisements
Advertisements
प्रश्न
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
उत्तर
\[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]
= \[\displaystyle\sum_{r=1}^{n}\frac{r(r + 1)}{2r}\]
= \[\frac{1}{2}\displaystyle\sum_{r=1}^{n}(r + 1)\]
`= 1/2 [sum_(r=1)^n "r" + sum_(r=1)^n 1]`
= `1/2[("n"("n" + 1))/2 + "n"]`
= `"n"/4[("n" + 1) + 2]`
= `"n"/4("n" + 3)`
APPEARS IN
संबंधित प्रश्न
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
Find `sum_(r=1)^n (1+2+3+... + "r")/"r"`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find `sum_(r = 1) ^n (1+2+3+ ... + r)/(r)`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`.
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`
Express the recurring decimal as a rational number.
3.4`bar56`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`