Advertisements
Advertisements
प्रश्न
Find \[\displaystyle\sum_{r=1}^{n} (3r^2 - 2r + 1)\].
उत्तर
\[\displaystyle\sum_{r=1}^{n}(3r^2 - 2r + 1)\]
= 3\[\displaystyle\sum_{r=1}^{n} r^2 - 2\displaystyle\sum_{r=1}^{n} r +\displaystyle\sum_{r=1}^{n} 1\]
= `3.("n"("n" + 1)(2"n" + 1))/6 - 2("n"("n" + 1))/2 + "n"`
= `"n"/2[2"n"^2 + 3"n" + 1) - 2("n" + 1) + 2]`
= `"n"/2(2"n"^2 + 3"n" + 1 - 2"n" - 2 + 2)`
= `"n"/2(2"n"^2 + "n" + 1)`.
APPEARS IN
संबंधित प्रश्न
Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
Find 122 + 132 + 142 + 152 + … + 202.
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find `sum_(r=1)^n (1 + 2 + 3 + ...+ r)/ r`
Find n, if `(1xx2 + 2xx 3 + 3xx4 + 4xx5 + ...+"upto n terms")/(1 + 2 + 3 + 4 + ...+"upto n terms") = 100/3`
Find `sum_(r = 1)^n (1 + 2 + 3 + ... + r)/(r)`
Find n, if `(1xx2+2xx3+3xx4+4xx5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Express the recurring decimal as a rational number.
3.4`bar56`
Find `sum _(r=1)^(n) (1 + 2 + 3 + ... + r)/r`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3 . `
Find n, if `(1 xx 2 + 2 xx3+3xx4+4xx5+... +"upto n terms")/(1+2+3+4+...+ "upto n terms") = 100/3`.