Advertisements
Advertisements
प्रश्न
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
उत्तर
1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Now, 1, 3, 5, 7, … are in A.P. with a = 1 and d = 2.
∴ rth term = 1 + (r – 1)2 = 2r – 1
3, 5, 7, 9, … are in A.P. with a = 3 and d = 2
∴ rth term = 3 + (r – 1)2 = 2r + 1
and 5, 7, 9, 11, … are in A.P. with a = 5 and d = 2.
∴ rth term = 5 +(r – 1)2 = 2r + 3
∴ 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... upto n terms
= \[\displaystyle\sum_{r=1}^{n}(2r - 1)(2r + 1)(2r + 3)\]
= \[\displaystyle\sum_{r=1}^{n}(4r^2 - 1)(2r + 3)\]
= \[\displaystyle\sum_{r=1}^{n} (8r^3 + 12r^2 - 2r - 3)\]
= 8\[\displaystyle\sum_{r=1}^{n} r^3 + 12\displaystyle\sum_{r=1}^{n}r^2 - 2\displaystyle\sum_{r=1}^{n} r - 3\displaystyle\sum_{r=1}^{n} 1\]
= `8{("n"("n" + 1))/2}^2 + 12{("n"("n" + 1)(2"n" + 1))/6} - 2{("n"("n" + 1))/2} - 3"n"`
= 2n2(n + 1)2 + 2n(n + 1)(2n + 1) – n(n + 1) – 3n
= n(n + 1)[2n(n + 1) + 4n + 2 – 1] – 3n
= n(n + 1)(2n2 + 6n + 1) – 3n
= n(2n3 + 8n2 + 7n + 1 – 3)
= n(2n3 + 8n2 + 7n – 2).
APPEARS IN
संबंधित प्रश्न
Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively, then show that: 9S22 = S3(1 + 8S1).
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
Find (502 – 492) + (482 –472) + (462 – 452) + .. + (22 –12).
Find `sum_(r=1)^n(1 + 2 + 3 + . . . + r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find n, if `(1xx2 + 2xx 3 + 3xx4 + 4xx5 + ...+"upto n terms")/(1 + 2 + 3 + 4 + ...+"upto n terms") = 100/3`
Find `sum_(r=1)^n (1 + 2 + 3 + --- +r)/r`
Find `sum_(r = 1)^n (1 + 2 + 3 + ... + r)/(r)`
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`
Express the recurring decimal as a rational number.
3.4`bar56`
Find `sum_(r=1)^n (1+2+3+......+r)/r`
Find `sum _(r=1)^(n) (1 + 2 + 3 + ... + r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3 . `