Advertisements
Advertisements
प्रश्न
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
उत्तर
`(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`
∴ \[\frac{\displaystyle\sum_{r=1}^{n} r(r + 1)}{\displaystyle\sum_{r=1}^{n} r} = \frac{100}{3}\]
∴ \[\frac{\displaystyle\sum_{r=1}^{n} r^2 + \displaystyle\sum_{r=1}^{n} r}{\displaystyle\sum_{r=1}^{n} r} = \frac{100}{3}\]
∴ `(("n"("n" + 1)(2"n" + 1))/6 + ("n"("n" + 1))/2)/(("n"("n" + 1))/2) = 100/3`
∴ `(("n"("n" + 1))/6[(2"n" + 1) + 3])/(("n"("n" + 1))/2) = 100/3`
∴ `(2("n" + 2))/3 = 100/3`
∴ n + 2 = 50
∴ n = 48
APPEARS IN
संबंधित प्रश्न
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]
Find `sum_(r=1)^n(1 + 2 + 3 + . . . + r)/r`
Find `sum_(r = 1) ^n (1+2+3+ ... + r)/(r)`
Find `sum_(r=1)^n (1 + 2 + 3 + ...+ r)/ r`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`.
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find `sum_(r=1)^n (1+2+3+...+r)/r`
Express the recurring decimal as a rational number.
3.4`bar56`
Find `sum_(r=1)^n (1+2+3+......+r)/r`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`
Find n, if `(1 xx 2 + 2 xx3+3xx4+4xx5+... +"upto n terms")/(1+2+3+4+...+ "upto n terms") = 100/3`.