Advertisements
Advertisements
प्रश्न
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
उत्तर
\[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\]
= 5\[\displaystyle\sum_{r=1}^{n}r^2 + 4\displaystyle\sum_{r=1}^{n} r - 3\displaystyle\sum_{r=1}^{n} 1\]
= `5.("n"("n" + 1)(2"n" + 1))/6 + 4.("n"("n" + 1))/2 - 3"n"`
= `"n"/6[5(2"n"^2 + 3"n" + 1) + 12("n" + 1) - 18]`
= `"n"/6(10"n"^2 + 15"n" + 5 + 12"n" + 12 - 18)`
= `"n"/6(10"n"^2 + 27"n" - 1)`.
APPEARS IN
संबंधित प्रश्न
Find \[\displaystyle\sum_{r=1}^{n} (3r^2 - 2r + 1)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
Find \[\displaystyle\sum_{r=1}^{n}r(r-3)(r-2)\].
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
Find `sum_(r=1)^n (1+2+3+....+ r)/r`
Find `sum_(r=1)^n (1+2+3+... + "r")/"r"`
Find `sum_(r=1)^n (1 + 2 + 3 + ...+ r)/ r`
Find `sum_(r=1)^n (1 + 2 + 3 + --- +r)/r`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`.
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]
Find `sum _(r=1)^(n) (1 + 2 + 3 + ... + r)/r`
Find `sum_(r = 1)^n (1 + 2 + 3 + .... + r)/r.`