Advertisements
Advertisements
Question
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Solution
\[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\]
= 5\[\displaystyle\sum_{r=1}^{n}r^2 + 4\displaystyle\sum_{r=1}^{n} r - 3\displaystyle\sum_{r=1}^{n} 1\]
= `5.("n"("n" + 1)(2"n" + 1))/6 + 4.("n"("n" + 1))/2 - 3"n"`
= `"n"/6[5(2"n"^2 + 3"n" + 1) + 12("n" + 1) - 18]`
= `"n"/6(10"n"^2 + 15"n" + 5 + 12"n" + 12 - 18)`
= `"n"/6(10"n"^2 + 27"n" - 1)`.
APPEARS IN
RELATED QUESTIONS
Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.
Find \[\displaystyle\sum_{r=1}^{n} (3r^2 - 2r + 1)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
Find \[\displaystyle\sum_{r=1}^{n}r(r-3)(r-2)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1xx2 + 2xx3 + 3xx4 + 4xx5 + .....+ "upto n terms") / (1 + 2 + 3 + 4 + .....+"upto n terms") = 100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find `sum_(r = 1) ^n (1+2+3+ ... + r)/(r)`
Find `sum_(r=1)^n (1 + 2 + 3 + ...+ r)/ r`
Find n, if `(1xx2 + 2xx 3 + 3xx4 + 4xx5 + ...+"upto n terms")/(1 + 2 + 3 + 4 + ...+"upto n terms") = 100/3`
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]
Find n, if `(1xx2+2xx3+3xx4+4xx5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`
Find `sum _(r=1)^(n) (1 + 2 + 3 + ... + r)/r`