Advertisements
Advertisements
Question
Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.
Solution
`sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`
= `sum_("r" = 1)^"n"(2"r"^2 + "r" - 1)`
= `2 sum_("r" = 1)^"n""r"^2 + sum_("r" = 1)^"n""r" - sum_("r" = 1)^"n"1`
= `2.("n"("n" + 1)(2"n" + 1))/6 + ("n"("n" + 1))/2 - "n"`
= `"n"/6[2(2"n"^2 + 3"n" + 1) + 3("n" + 1) - 6]`
= `"n"/6(4"n"^2 + 6"n" + 2 + 3"n" + 3 - 6)`
= `"n"/6 (4"n"^2 + 9"n" - 1)`.
APPEARS IN
RELATED QUESTIONS
Find `sum_("r" = 1)^"n" (1^3 + 2^3 + ... + "r"^3)/("r"("r" + 1)`.
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Find \[\displaystyle\sum_{r=1}^{n}r(r-3)(r-2)\].
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
Find 122 + 132 + 142 + 152 + … + 202.
Find `sum_(r=1)^n(1 + 2 + 3 + . . . + r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r = 1)^n (1 + 2 + 3 + ... + r)/(r)`
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1+2+3+...+r)/r`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`
Express the recurring decimal as a rational number.
3.4`bar56`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3 . `