Advertisements
Advertisements
Question
Find `sum_("r" = 1)^"n" (1^3 + 2^3 + ... + "r"^3)/("r"("r" + 1)`.
Solution
We know that,
13 + 23 + 33 + ... + n3 = `("n"^2("n" + 1)^2)/4`
∴ 13 + 23 + 33 + ... + r3 = `("r"^2("r" + 1)^2)/4`
∴ `(1^3 + 2^3 + 3^3 + .... + "r"^3)/("r"("r" + 1)) = ("r"("r" + 1))/4`
∴ `sum_("r" = 1)^"n"[(1^3 + 2^3 + 3^3 + .... + "r"^3)/("r"("r" + 1))]`
= `sum_("r" = 1)^"n"("r"("r" + 1))/4`
= `1/4 sum_("r" = 1)^"n"("r"^2 + "r")`
= `1/4(sum_("r" = 1)^"n" "r"^2 + sum_("r" = 1)^"n""r")`
= `1/4[("n"("n" + 1)(2"n" + 1))/6 + ("n"("n" + 1))/2]`
= `1/4.("n"("n" + 1))/2 ((2"n" + 1)/3 + 1)`
= `("n"("n" + 1))/8 ((2"n" + 1 + 3)/3)`
= `("n"("n" + 1)(2"n" + 4))/24`
= `(2"n"("n" + 1)("n" + 2))/24`
= `("n"("n" + 1)("n" + 2))/12`.
APPEARS IN
RELATED QUESTIONS
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively, then show that: 9S22 = S3(1 + 8S1).
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
Find 122 + 132 + 142 + 152 + … + 202.
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find `sum_(r=1)^n (1 + 2 + 3 + ...+ r)/ r`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r=1)^n (1 + 2 + 3 + --- +r)/r`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]
Find n, if `(1xx2+2xx3+3xx4+4xx5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum _(r=1)^(n) (1 + 2 + 3 + ... + r)/r`
Find n, if `(1 xx 2 + 2 xx3+3xx4+4xx5+... +"upto n terms")/(1+2+3+4+...+ "upto n terms") = 100/3`.
Find `sum_(r = 1)^n (1 + 2 + 3 + .... + r)/r.`