Advertisements
Advertisements
Question
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
Solution
We know that
12 + 22 + 32 + ... + n2 = `("n"("n" + 1)(2"n" + 1))/6`
∴ 12 + 22 + 32 + ... + r2 = `("r"("r" + 1)(2"r" + 1))/6`
∴ `(1^2 + 2^2 + 3^2 + ... "r"^2)/(2"r" + 1) = ("r"("r" - 1))/6`
∴ \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
= \[\displaystyle\sum_{r=1}^{n}\frac{r(r+1)}{6} = \frac{1}{6}\displaystyle\sum_{r=1}^{n}(r^2 + r)\]
= \[\frac{1}{6}{(\displaystyle\sum_{r=1}^{n} r^2+ \displaystyle\sum_{r=1}^{n} r)}\]
= `1/6[("n"("n" + 1)(2"n" + 1))/6 + ("n"("n" + 1))/2]`
= `1/6 xx ("n"("n" + 1))/2 ((2"n" + 1)/3 + 1)`
= `("n"("n" + 1))/12 ((2"n" + 1 + 3)/3)`
= `("n"("n" + 1)(2"n" + 4))/36`
= `(2"n"("n" + 1)("n" + 2))/36`
= `("n"("n" + 1)("n" + 2))/18`
APPEARS IN
RELATED QUESTIONS
Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]
Find 122 + 132 + 142 + 152 + … + 202.
Find (502 – 492) + (482 –472) + (462 – 452) + .. + (22 –12).
Find `sum_(r=1)^n(1 + 2 + 3 + . . . + r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1xx2 + 2xx3 + 3xx4 + 4xx5 + .....+ "upto n terms") / (1 + 2 + 3 + 4 + .....+"upto n terms") = 100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1+2+3+...+r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Express the recurring decimal as a rational number.
3.4`bar56`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`