English

Find ∑r=1n12+22+32+... r22r+1. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]

Sum

Solution

We know that

12 + 22 + 32 + ... + n2 = `("n"("n" + 1)(2"n" + 1))/6`

∴ 12 + 22 + 32 + ... + r2 = `("r"("r" + 1)(2"r" + 1))/6`

∴ `(1^2 + 2^2 + 3^2 + ...  "r"^2)/(2"r" + 1) = ("r"("r" - 1))/6`

∴ \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]

= \[\displaystyle\sum_{r=1}^{n}\frac{r(r+1)}{6} = \frac{1}{6}\displaystyle\sum_{r=1}^{n}(r^2 + r)\]

= \[\frac{1}{6}{(\displaystyle\sum_{r=1}^{n} r^2+ \displaystyle\sum_{r=1}^{n} r)}\]

= `1/6[("n"("n" + 1)(2"n" + 1))/6 + ("n"("n" + 1))/2]`

= `1/6 xx ("n"("n" + 1))/2 ((2"n" + 1)/3 + 1)`

= `("n"("n" + 1))/12 ((2"n" + 1 + 3)/3)`

= `("n"("n" + 1)(2"n" + 4))/36`

= `(2"n"("n" + 1)("n" + 2))/36`

= `("n"("n" + 1)("n" + 2))/18`

shaalaa.com
Special Series (Sigma Notation)
  Is there an error in this question or solution?
Chapter 4: Sequences and Series - MISCELLANEOUS EXERCISE - 4 [Page 64]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
Chapter 4 Sequences and Series
MISCELLANEOUS EXERCISE - 4 | Q 12) | Page 64
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×