Advertisements
Advertisements
Question
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Solution
22 + 42 + 62 + 82 + ... upto n terms
= (2 x 1)2 + (2 x 2)2 + (2 x 3)2 + (2 + x 4)2 + ...
= \[\displaystyle\sum_{r=1}^{n}(2r^2)\]
= 4\[\displaystyle\sum_{r=1}^{n} r^2\]
= `(4."n"("n" + 1)(2"n" + 1))/6`
= `(2"n"("n" + 1)(2"n" + 1))/3`.
APPEARS IN
RELATED QUESTIONS
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Find `sum_("r" = 1)^"n" (1^3 + 2^3 + ... + "r"^3)/("r"("r" + 1)`.
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Find `sum_(r=1)^n(1 + 2 + 3 + . . . + r)/r`
Find `sum_(r=1)^n (1+2+3+....+ r)/r`
Find `sum_(r=1)^n (1+2+3+... + "r")/"r"`
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`.
Find `sum_(r=1)^n (1+2+3+...+r)/r`
Express the recurring decimal as a rational number.
3.4`bar56`
Find `sum _(r=1)^(n) (1 + 2 + 3 + ... + r)/r`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3 . `
Find n, if `(1 xx 2 + 2 xx3+3xx4+4xx5+... +"upto n terms")/(1+2+3+4+...+ "upto n terms") = 100/3`.