Advertisements
Advertisements
Question
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
Solution
5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms
Now, 5, 7, 9, 11, … are in A.P.
rth term = 5 + (r – 1) (2) = 2r + 3
7, 9, 11, .… are in A.P.
rth term = 7 + (r – 1) (2) = 2r + 5
∴ 5 × 7 + 7 × 9 + 9 × 11 × 13 + ... upto n terms
= \[\displaystyle\sum_{r=1}^{n} (2r + 3)(2r + 5)\]
= \[\displaystyle\sum_{r=1}^{n}4r^2 + 16r + 15\]
= 4\[\displaystyle\sum_{r=1}^{n} r^2 + 16 \displaystyle\sum_{r=1}^{n} r + 15 \displaystyle\sum_{r=1}^{n} 1\]
= `4[(n(n + 1) (2n + 1)) /6] + 16 [(n(n + 1))/2] 15 n`
= `"n"/3[2(2"n"^2 + 3"n" + 1) + 24("n" + 1) + 45]`
= `"n"/3(4"n"^2 + 6"n" + 2 + 24"n" + 24 + 45)`
= `"n"/3(4"n"^2 + 30"n" + 71)`
APPEARS IN
RELATED QUESTIONS
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Find `sum_("r" = 1)^"n" (1^3 + 2^3 + ... + "r"^3)/("r"("r" + 1)`.
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
Find (502 – 492) + (482 –472) + (462 – 452) + .. + (22 –12).
Find `sum_(r=1)^n(1 + 2 + 3 + . . . + r)/r`
Find `sum_(r=1)^n (1+2+3+....+ r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1xx2 + 2xx3 + 3xx4 + 4xx5 + .....+ "upto n terms") / (1 + 2 + 3 + 4 + .....+"upto n terms") = 100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...... + "upto n terms")/(1 + 2 + 3 + 4 + ....+ "upto n terms") = 100/3`
Find n, if `(1xx2 + 2xx 3 + 3xx4 + 4xx5 + ...+"upto n terms")/(1 + 2 + 3 + 4 + ...+"upto n terms") = 100/3`
Find `sum_(r = 1)^n (1 + 2 + 3 + ... + r)/(r)`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Express the recurring decimal as a rational number.
3.4`bar56`
Find `sum_(r=1)^n (1+2+3+......+r)/r`