Advertisements
Advertisements
Question
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Solution
1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Now, 1, 3, 5, 7, … are in A.P. with a = 1 and d = 2.
∴ rth term = 1 + (r – 1)2 = 2r – 1
3, 5, 7, 9, … are in A.P. with a = 3 and d = 2
∴ rth term = 3 + (r – 1)2 = 2r + 1
and 5, 7, 9, 11, … are in A.P. with a = 5 and d = 2.
∴ rth term = 5 +(r – 1)2 = 2r + 3
∴ 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... upto n terms
= \[\displaystyle\sum_{r=1}^{n}(2r - 1)(2r + 1)(2r + 3)\]
= \[\displaystyle\sum_{r=1}^{n}(4r^2 - 1)(2r + 3)\]
= \[\displaystyle\sum_{r=1}^{n} (8r^3 + 12r^2 - 2r - 3)\]
= 8\[\displaystyle\sum_{r=1}^{n} r^3 + 12\displaystyle\sum_{r=1}^{n}r^2 - 2\displaystyle\sum_{r=1}^{n} r - 3\displaystyle\sum_{r=1}^{n} 1\]
= `8{("n"("n" + 1))/2}^2 + 12{("n"("n" + 1)(2"n" + 1))/6} - 2{("n"("n" + 1))/2} - 3"n"`
= 2n2(n + 1)2 + 2n(n + 1)(2n + 1) – n(n + 1) – 3n
= n(n + 1)[2n(n + 1) + 4n + 2 – 1] – 3n
= n(n + 1)(2n2 + 6n + 1) – 3n
= n(2n3 + 8n2 + 7n + 1 – 3)
= n(2n3 + 8n2 + 7n – 2).
APPEARS IN
RELATED QUESTIONS
Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Find `sum_("r" = 1)^"n" (1^3 + 2^3 + ... + "r"^3)/("r"("r" + 1)`.
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively, then show that: 9S22 = S3(1 + 8S1).
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...... + "upto n terms")/(1 + 2 + 3 + 4 + ....+ "upto n terms") = 100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find `sum_(r = 1) ^n (1+2+3+ ... + r)/(r)`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`.
Find `sum_(r = 1)^n (1 + 2 + 3 + ... + r)/(r)`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.
Express the recurring decimal as a rational number.
3.4`bar56`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`