Advertisements
Advertisements
Question
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
Solution
Let S = (702 – 692) + (682 – 672) + ... + (22 – 12)
∴ S = (22 – 12) + (42 – 32) + ... + (702 – 692)
Here, 2, 4, 6, …, 70 is an A.P. with rth term = 2r
and 1, 3, 5, …, 69 in A.P. with rth term = 2r – 1
∴ S = \[\displaystyle\sum_{r=1}^{35} [(2r)^2 - (2r - 1)^2]\]
= \[\displaystyle\sum_{r=1}^{35}[4r^2 - (4r^2 - 4r + 1)]\]
= \[\displaystyle\sum_{r=1}^{35}(4r - 1)\]
= 4 \[\displaystyle\sum_{r=1}^{35} r - \displaystyle\sum_{r=1}^{35} 1\]
= `4.(35 xx 36)/2 - 35`
= (72 – 1) (35)
= 71 x 35 = 2485.
APPEARS IN
RELATED QUESTIONS
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
Find 122 + 132 + 142 + 152 + … + 202.
Find `sum_(r=1)^n(1 + 2 + 3 + . . . + r)/r`
Find `sum_(r=1)^n (1+2+3+... + "r")/"r"`
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1xx2 + 2xx3 + 3xx4 + 4xx5 + .....+ "upto n terms") / (1 + 2 + 3 + 4 + .....+"upto n terms") = 100/3`
Find `sum_(r = 1) ^n (1+2+3+ ... + r)/(r)`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r=1)^n (1 + 2 + 3 + --- +r)/r`
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.
Express the recurring decimal as a rational number.
3.4`bar56`
Find `sum _(r=1)^(n) (1 + 2 + 3 + ... + r)/r`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/ (1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r = 1)^n (1 + 2 + 3 + .... + r)/r.`