English

Find (702 – 692) + (682 – 672) + ... + (22 – 12) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find (702 – 692) + (682 – 672) + ... + (22 – 12)

Sum

Solution

Let S = (702 – 692) + (682 – 672) + ... + (22 – 12)

∴ S = (22 –  12) + (42 –  32) + ... + (702 –  692)

Here, 2, 4, 6, …, 70 is an A.P. with rth term = 2r
and 1, 3, 5, …, 69 in A.P. with rth term = 2r – 1

∴ S = \[\displaystyle\sum_{r=1}^{35} [(2r)^2 - (2r - 1)^2]\]

= \[\displaystyle\sum_{r=1}^{35}[4r^2 - (4r^2 - 4r + 1)]\]

= \[\displaystyle\sum_{r=1}^{35}(4r - 1)\]

= 4 \[\displaystyle\sum_{r=1}^{35} r - \displaystyle\sum_{r=1}^{35} 1\]

= `4.(35 xx 36)/2 - 35`

= (72 – 1) (35)

= 71 x 35 = 2485.

shaalaa.com
Special Series (Sigma Notation)
  Is there an error in this question or solution?
Chapter 4: Sequences and Series - EXERCISE 4.5 [Page 63]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×