Advertisements
Advertisements
Question
Find 122 + 132 + 142 + 152 + … + 202.
Solution
122 + 132 + 142 + 152 + … + 202
= (12 + 22 + 32 + 42 + ... + 202) – (12 + 22 + 32 + 42 + ... + 112)
= \[\displaystyle\sum_{r=1}^{20} r^2 - \displaystyle\sum_{r=1}^{11} r^2\]
= `(20(20 + 1)(2 xx 20 + 1))/6 - (11(11 + 1)(2 xx 11 + 1))/6`
= `(20 xx 21 xx 41)/6 - (11 xx 12 xx 23)/6`
= 2870 – 506 = 2364.
APPEARS IN
RELATED QUESTIONS
Find \[\displaystyle\sum_{r=1}^{n} (3r^2 - 2r + 1)\].
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
Find \[\displaystyle\sum_{r=1}^{n}r(r-3)(r-2)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
Find (502 – 492) + (482 –472) + (462 – 452) + .. + (22 –12).
Find `sum_(r=1)^n(1 + 2 + 3 + . . . + r)/r`
Find `sum_(r = 1) ^n (1+2+3+ ... + r)/(r)`
Find n, if `(1xx2 + 2xx 3 + 3xx4 + 4xx5 + ...+"upto n terms")/(1 + 2 + 3 + 4 + ...+"upto n terms") = 100/3`
Find `sum_(r=1)^n (1 + 2 + 3 + --- +r)/r`
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]
Find n, if `(1xx2+2xx3+3xx4+4xx5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`
Find `sum_(r = 1)^n (1 + 2 + 3 + .... + r)/r.`