Advertisements
Advertisements
Question
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
Solution
`(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`
∴ \[\frac{\displaystyle\sum_{r=1}^{n} r(r + 1)}{\displaystyle\sum_{r=1}^{n} r} = \frac{100}{3}\]
∴ \[\frac{\displaystyle\sum_{r=1}^{n} r^2 + \displaystyle\sum_{r=1}^{n} r}{\displaystyle\sum_{r=1}^{n} r} = \frac{100}{3}\]
∴ `(("n"("n" + 1)(2"n" + 1))/6 + ("n"("n" + 1))/2)/(("n"("n" + 1))/2) = 100/3`
∴ `(("n"("n" + 1))/6[(2"n" + 1) + 3])/(("n"("n" + 1))/2) = 100/3`
∴ `(2("n" + 2))/3 = 100/3`
∴ n + 2 = 50
∴ n = 48
APPEARS IN
RELATED QUESTIONS
Find `sum_("r" = 1)^"n" (1^3 + 2^3 + ... + "r"^3)/("r"("r" + 1)`.
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
Find 122 + 132 + 142 + 152 + … + 202.
Find `sum_(r=1)^n (1+2+3+... + "r")/"r"`
Find n, if `(1xx2 + 2xx3 + 3xx4 + 4xx5 + .....+ "upto n terms") / (1 + 2 + 3 + 4 + .....+"upto n terms") = 100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find `sum_(r = 1)^n (1 + 2 + 3 + ... + r)/(r)`
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1+2+3+...+r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`
Express the recurring decimal as a rational number.
3.4`bar56`
Find `sum_(r=1)^n (1+2+3+......+r)/r`
Find n, if `(1 xx 2 + 2 xx3+3xx4+4xx5+... +"upto n terms")/(1+2+3+4+...+ "upto n terms") = 100/3`.
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/ (1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r = 1)^n (1 + 2 + 3 + .... + r)/r.`