Advertisements
Advertisements
प्रश्न
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
उत्तर
Let S = (702 – 692) + (682 – 672) + ... + (22 – 12)
∴ S = (22 – 12) + (42 – 32) + ... + (702 – 692)
Here, 2, 4, 6, …, 70 is an A.P. with rth term = 2r
and 1, 3, 5, …, 69 in A.P. with rth term = 2r – 1
∴ S = \[\displaystyle\sum_{r=1}^{35} [(2r)^2 - (2r - 1)^2]\]
= \[\displaystyle\sum_{r=1}^{35}[4r^2 - (4r^2 - 4r + 1)]\]
= \[\displaystyle\sum_{r=1}^{35}(4r - 1)\]
= 4 \[\displaystyle\sum_{r=1}^{35} r - \displaystyle\sum_{r=1}^{35} 1\]
= `4.(35 xx 36)/2 - 35`
= (72 – 1) (35)
= 71 x 35 = 2485.
APPEARS IN
संबंधित प्रश्न
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
Find `sum_(r=1)^n (1+2+3+....+ r)/r`
Find `sum_(r=1)^n (1+2+3+... + "r")/"r"`
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find `sum_(r = 1) ^n (1+2+3+ ... + r)/(r)`
Find `sum_(r=1)^n (1 + 2 + 3 + ...+ r)/ r`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`.
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`
Find n, if `(1 xx 2 + 2 xx3+3xx4+4xx5+... +"upto n terms")/(1+2+3+4+...+ "upto n terms") = 100/3`.
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/ (1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r = 1)^n (1 + 2 + 3 + .... + r)/r.`