Advertisements
Advertisements
प्रश्न
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
उत्तर
We know that
12 + 22 + 32 + ... + n2 = `("n"("n" + 1)(2"n" + 1))/6`
∴ 12 + 22 + 32 + ... + r2 = `("r"("r" + 1)(2"r" + 1))/6`
∴ `(1^2 + 2^2 + 3^2 + ... "r"^2)/(2"r" + 1) = ("r"("r" - 1))/6`
∴ \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
= \[\displaystyle\sum_{r=1}^{n}\frac{r(r+1)}{6} = \frac{1}{6}\displaystyle\sum_{r=1}^{n}(r^2 + r)\]
= \[\frac{1}{6}{(\displaystyle\sum_{r=1}^{n} r^2+ \displaystyle\sum_{r=1}^{n} r)}\]
= `1/6[("n"("n" + 1)(2"n" + 1))/6 + ("n"("n" + 1))/2]`
= `1/6 xx ("n"("n" + 1))/2 ((2"n" + 1)/3 + 1)`
= `("n"("n" + 1))/12 ((2"n" + 1 + 3)/3)`
= `("n"("n" + 1)(2"n" + 4))/36`
= `(2"n"("n" + 1)("n" + 2))/36`
= `("n"("n" + 1)("n" + 2))/18`
APPEARS IN
संबंधित प्रश्न
Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.
Find `sum_("r" = 1)^"n" (1^3 + 2^3 + ... + "r"^3)/("r"("r" + 1)`.
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively, then show that: 9S22 = S3(1 + 8S1).
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Find 122 + 132 + 142 + 152 + … + 202.
Find (502 – 492) + (482 –472) + (462 – 452) + .. + (22 –12).
Find `sum_(r=1)^n(1 + 2 + 3 + . . . + r)/r`
Find `sum_(r=1)^n (1+2+3+....+ r)/r`
Find n, if `(1xx2 + 2xx3 + 3xx4 + 4xx5 + .....+ "upto n terms") / (1 + 2 + 3 + 4 + .....+"upto n terms") = 100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`
Find `sum _(r=1)^(n) (1 + 2 + 3 + ... + r)/r`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/ (1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`