हिंदी

Find ∑r=1n12+22+32+... r22r+1. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]

योग

उत्तर

We know that

12 + 22 + 32 + ... + n2 = `("n"("n" + 1)(2"n" + 1))/6`

∴ 12 + 22 + 32 + ... + r2 = `("r"("r" + 1)(2"r" + 1))/6`

∴ `(1^2 + 2^2 + 3^2 + ...  "r"^2)/(2"r" + 1) = ("r"("r" - 1))/6`

∴ \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]

= \[\displaystyle\sum_{r=1}^{n}\frac{r(r+1)}{6} = \frac{1}{6}\displaystyle\sum_{r=1}^{n}(r^2 + r)\]

= \[\frac{1}{6}{(\displaystyle\sum_{r=1}^{n} r^2+ \displaystyle\sum_{r=1}^{n} r)}\]

= `1/6[("n"("n" + 1)(2"n" + 1))/6 + ("n"("n" + 1))/2]`

= `1/6 xx ("n"("n" + 1))/2 ((2"n" + 1)/3 + 1)`

= `("n"("n" + 1))/12 ((2"n" + 1 + 3)/3)`

= `("n"("n" + 1)(2"n" + 4))/36`

= `(2"n"("n" + 1)("n" + 2))/36`

= `("n"("n" + 1)("n" + 2))/18`

shaalaa.com
Special Series (Sigma Notation)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Sequences and Series - MISCELLANEOUS EXERCISE - 4 [पृष्ठ ६४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 4 Sequences and Series
MISCELLANEOUS EXERCISE - 4 | Q 12) | पृष्ठ ६४

संबंधित प्रश्न

Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.


Find `sum_("r" = 1)^"n" (1^3 + 2^3 + ... + "r"^3)/("r"("r" + 1)`.


Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.


Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.


If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively, then show that: 9S22 = S3(1 + 8S1).


Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].


Find 122 + 132 + 142 + 152 + … + 202.


Find (502 – 492) + (482 –472) + (462 – 452) + .. + (22 –12).


Find `sum_(r=1)^n(1 + 2 + 3 + . . .  + r)/r`


Find `sum_(r=1)^n  (1+2+3+....+ r)/r`


Find n, if `(1xx2 + 2xx3 + 3xx4 + 4xx5 + .....+ "upto n terms") / (1 + 2 + 3 + 4 +  .....+"upto n terms") = 100/3`


Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`


Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`


Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.


Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`


Find `sum _(r=1)^(n)  (1 + 2 + 3 + ... + r)/r`


Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`


Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/ (1 + 2 + 3 + 4 + ...  + "upto n terms") = 100/3`  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×