Advertisements
Advertisements
प्रश्न
Find `sum_("r" = 1)^"n" (1^3 + 2^3 + ... + "r"^3)/("r"("r" + 1)`.
उत्तर
We know that,
13 + 23 + 33 + ... + n3 = `("n"^2("n" + 1)^2)/4`
∴ 13 + 23 + 33 + ... + r3 = `("r"^2("r" + 1)^2)/4`
∴ `(1^3 + 2^3 + 3^3 + .... + "r"^3)/("r"("r" + 1)) = ("r"("r" + 1))/4`
∴ `sum_("r" = 1)^"n"[(1^3 + 2^3 + 3^3 + .... + "r"^3)/("r"("r" + 1))]`
= `sum_("r" = 1)^"n"("r"("r" + 1))/4`
= `1/4 sum_("r" = 1)^"n"("r"^2 + "r")`
= `1/4(sum_("r" = 1)^"n" "r"^2 + sum_("r" = 1)^"n""r")`
= `1/4[("n"("n" + 1)(2"n" + 1))/6 + ("n"("n" + 1))/2]`
= `1/4.("n"("n" + 1))/2 ((2"n" + 1)/3 + 1)`
= `("n"("n" + 1))/8 ((2"n" + 1 + 3)/3)`
= `("n"("n" + 1)(2"n" + 4))/24`
= `(2"n"("n" + 1)("n" + 2))/24`
= `("n"("n" + 1)("n" + 2))/12`.
APPEARS IN
संबंधित प्रश्न
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively, then show that: 9S22 = S3(1 + 8S1).
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Find \[\displaystyle\sum_{r=1}^{n}r(r-3)(r-2)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
Find 122 + 132 + 142 + 152 + … + 202.
Find (502 – 492) + (482 –472) + (462 – 452) + .. + (22 –12).
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find `sum_(r = 1) ^n (1+2+3+ ... + r)/(r)`
Find `sum_(r=1)^n (1 + 2 + 3 + ...+ r)/ r`
Find `sum_(r=1)^n (1 + 2 + 3 + --- +r)/r`
Find `sum_(r=1)^n (1+2+3+...+r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3 . `