Advertisements
Advertisements
प्रश्न
Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.
उत्तर
`sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`
= `sum_("r" = 1)^"n"(2"r"^2 + "r" - 1)`
= `2 sum_("r" = 1)^"n""r"^2 + sum_("r" = 1)^"n""r" - sum_("r" = 1)^"n"1`
= `2.("n"("n" + 1)(2"n" + 1))/6 + ("n"("n" + 1))/2 - "n"`
= `"n"/6[2(2"n"^2 + 3"n" + 1) + 3("n" + 1) - 6]`
= `"n"/6(4"n"^2 + 6"n" + 2 + 3"n" + 3 - 6)`
= `"n"/6 (4"n"^2 + 9"n" - 1)`.
APPEARS IN
संबंधित प्रश्न
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
Find (502 – 492) + (482 –472) + (462 – 452) + .. + (22 –12).
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find n, if `(1xx2 + 2xx 3 + 3xx4 + 4xx5 + ...+"upto n terms")/(1 + 2 + 3 + 4 + ...+"upto n terms") = 100/3`
Find n, if `(1xx2+2xx3+3xx4+4xx5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`
Express the recurring decimal as a rational number.
3.4`bar56`
Find `sum_(r=1)^n (1+2+3+......+r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3 . `
Find n, if `(1 xx 2 + 2 xx3+3xx4+4xx5+... +"upto n terms")/(1+2+3+4+...+ "upto n terms") = 100/3`.
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/ (1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r = 1)^n (1 + 2 + 3 + .... + r)/r.`