Advertisements
Advertisements
Question
In a particular university 40% of the students are having newspaper reading habit. Nine university students are selected to find their views on reading habit. Find the probability that atleast two-third have newspaper reading habit
Solution
Let p to the probability of having newspaper reading habit
p = `40/100 = 2/5`
q = 1 – p
= `1 2/5`
= `(5 - 2)/5`
= `3/5` and n = 9
In the binomial distribution p(x = 4) = ncx pxqn-r
The binomial distribution P(x) = `9"C"_x (2/5)^x (3/5)^(9 - x)`
P(at least two third have newspaper reading habit)
`"P"(x ≥ 9 xx 2/3)`
= `"P"(x ≥ 6)`
= P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9)
= `9"c"_6 (2/5)^6 (3/5)^(9 - 6) + 9"c"_7 (2/7)^7 (3/5)^(9 - 7) + 9"c"_8 (2/5)^8 (3/5)^(9 - 8) + 9"c"_9 (2/5)^9 (3/5)^(9 - 9)`
= `9"c"_3 (2/5)^6 (3/5)^3 + 9"c"_2 (2/5)^7 (3/5)^2 + 9"c"_1 (2/5)^8 (3/5)^1 + 1(2/5)^9 (3/5)^0`
= `(9 xx 8 xx 7)/(1 xx 2 xx 3) xx [((2)^6 xx (3)^3)/(5)^9] + (9 xx 8)/(1 xx 2) [((2)^7 xx (3)^2)/(5)^9] + 9 xx [((2)^8 xx 3)/(5)^9] + (2)^9/(5)^9`
= `84 xx ((64 xx 27)/(5)^9) + 36 [(128 xx 9)/(5)^9] + 9 xx [(256 xx 3)/(5)^9] + [512/(5)^9]`
= `145152/(5)^9 + 41472/(5)^9 + 6912/(5)^9 + 512/(5)^9`
= `(145152 + 41472 + 6912 + 512)/(5)^9`
= `194048/195312`
= 0.09935
APPEARS IN
RELATED QUESTIONS
Mention the properties of binomial distribution.
The average number of phone calls per minute into the switchboard of a company between 10.00 am and 2.30 pm is 2.5. Find the probability that during one particular minute there will be atleast 5 calls
Write down any five chief characteristics of Normal probability curve
In a distribution 30% of the items are under 50 and 10% are over 86. Find the mean and standard deviation of the distribution
If the heights of 500 students are normally distributed with mean 68.0 inches and standard deviation 3.0 inches, how many students have height greater than 72 inches
If the heights of 500 students are normally distributed with mean 68.0 inches and standard deviation 3.0 inches, how many students have height less than or equal to 64 inches
Choose the correct alternative:
In a parametric distribution the mean is equal to variance is
Choose the correct alternative:
The parameters of the normal distribution f(x) = `(1/sqrt(72pi))"e"^(-(x - 10)^2)/72 - oo < x < oo`
Choose the correct alternative:
The weights of newborn human babies are normally distributed with a mean of 3.2 kg and a standard deviation of 1.1 kg. What is the probability that a randomly selected newborn baby weight less than 2.0 kg?
Hospital records show that of patients suffering from a certain disease 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover?