Advertisements
Advertisements
Question
In an auditorium, the number of rows are equal to the number of seats in each row.If the number of rows is doubled and number of seats in each row is reduced by 5, then the total number of seats is increased by 375. How many rows were there?
Solution
Let the number of rows = x
then no. of seats in each row = x
and total number of seats = x × x = x2
According to the condition,
2x x (x - 5) = x2 + 375
⇒ 2x2 - 10x = x2 + 375
⇒ 2x2 - 10x - x2 - 375 = 0
⇒ x2 - 10x - 375 = 0
⇒ x2 - 25x + 15x - 375 = 0
⇒ x(x - 25) + 15(x - 25) = 0
⇒ (x - 25)(x + 15) = 0
Either x - 25 = 0,
then x = 25
or
x + 15 = 0,
then x = -15,
but it is not possible as it is negative.
∴ Number of rows = 25.
APPEARS IN
RELATED QUESTIONS
A cottage industry produces a certain number of toys in a day. The cost of production of each toy (in rupees) was found to be 55 minus the number of toys produced in a day. On a particular day, the total cost of production was Rs 750. We would like to find out the number of toys produced on that day.
Solve the following quadratic equations by factorization:
4x2 + 5x = 0
Solve the following quadratic equations by factorization:
`3x^2-2sqrt6x+2=0`
The sum of two natural numbers is 9 and the sum of their reciprocals is `1/2`. Find the numbers .
Solve the following quadratic equations by factorization: \[\frac{16}{x} - 1 = \frac{15}{x + 1}; x \neq 0, - 1\]
The number of quadratic equations having real roots and which do not change by squaring their roots is
Solve the following equation by factorization
3(y2 – 6) = y(y + 7) – 3
The hypotenuse of grassy land in the shape of a right triangle is 1 metre more than twice the shortest side. If the third side is 7 metres more than the shortest side, find the sides of the grassy land.
If twice the area of a smaller square is subtracted from the area of a larger square, the result is 14 cm2. However, if twice the area of the larger square is added to three times the area of the smaller square, the result is 203 cm2. Determine the sides of the two squares.
Find the roots of the following quadratic equation by the factorisation method:
`3sqrt(2)x^2 - 5x - sqrt(2) = 0`