Advertisements
Advertisements
Question
In Bohr’s model of the hydrogen atom, the radius of the first orbit of an electron is r0 . Then, the radius of the third orbit is:
a) `r_0/9`
b) `r_0`
c) `3r_0`
d) `9r_0`
Solution
`9r_0`
`∵ r_n = n^2(r_0)`
APPEARS IN
RELATED QUESTIONS
A neutron moving with a speed υ strikes a hydrogen atom in ground state moving towards it with the same speed. Find the minimum speed of the neutron for which inelastic (completely or partially) collision may take place. The mass of neutron = mass of hydrogen = 1.67 × 10−27 kg.v
According to Bohr, 'Angular momentum of an orbiting electron is quantized'. What is meant by this statement?
The dissociation constant of a weak base (BOH) is 1.8 × 10−5. Its degree of dissociation in 0.001 M solution is ____________.
Which of the following is/are CORRECT according to Bohr's atomic theory?
(I) Energy is emitted when electron moves from a higher stationary state to a lower one.
(II) Orbits are arranged concentrically around the nucleus in an increasing order of energy.
(III) The energy of an electron in the orbit changes with time.
Hydrogen atom has only one electron, so mutual repulsion between electrons is absent. However, in multielectron atoms mutual repulsion between the electrons is significant. How does this affect the energy of an electron in the orbitals of the same principal quantum number in multielectron atoms?
In form of Rydberg's constant R, the wave no of this first Ballmer line is
The ratio of the ionization energy of H and Be+3 is ______.
A hydrogen atom in is ground state absorbs 10.2 eV of energy. The angular momentum of electron of the hydrogen atom will increase by the value of ______.
(Given, Planck's constant = 6.6 × 10-34 Js)
What is the velocity of an electron in the 3rd orbit of hydrogen atom if its velocity in the 1st orbit is v0?
The de Broglie wavelength of an electron in the first Bohr’s orbit of hydrogen atom is equal to ______.