Advertisements
Advertisements
Question
In the following determine the set of values of k for which the given quadratic equation has real roots:
2x2 + 3x + k = 0
Solution
The given quadric equation is 2x2 + 3x + k = 0, and roots are real.
Then find the value of k.
Here, a = 2, b = 3 and c = k
As we know that D = b2 - 4ac
Putting the value of a = 2, b = 3 and c = k
= 32 - 4 x (2) x (k)
= 9 - 8k
The given equation will have real roots, if D ≥ 0
9 - 8k ≥ 0
8k ≤ 9
k ≤ 9/8
Therefore, the value of k ≤ 9/8.
APPEARS IN
RELATED QUESTIONS
Solve the quadratic equation 2x2 + ax − a2 = 0 for x.
Find the values of k for which the roots are real and equal in each of the following equation:
4x2 - 3kx + 1 = 0
In the following determine the set of values of k for which the given quadratic equation has real roots:
x2 - kx + 9 = 0
In the following determine the set of values of k for which the given quadratic equation has real roots:
2x2 + kx + 2 = 0
Solve the following quadratic equation using formula method only
x2 - 4x - 1 = 0
Find the value of k for which the roots of the equation 3x2 -10x +k = 0 are reciprocal of each other.
Find the nature of the roots of the following quadratic equations: `x^2 - (1)/(2)x - (1)/(2)` = 0
Choose the correct answer from the given four options :
Which of the following equations has two distinct real roots?
Complete the following activity to determine the nature of the roots of the quadratic equation x2 + 2x – 9 = 0 :
Solution :
Compare x2 + 2x – 9 = 0 with ax2 + bx + c = 0
a = 1, b = 2, c = `square`
∴ b2 – 4ac = (2)2 – 4 × `square` × `square`
Δ = 4 + `square` = 40
∴ b2 – 4ac > 0
∴ The roots of the equation are real and unequal.
The roots of the quadratic equation x2 – 6x – 7 = 0 are ______.