Advertisements
Advertisements
Question
Find the values of k for which the roots are real and equal in each of the following equation:
\[4 x^2 - 2\left( k + 1 \right)x + \left( k + 1 \right) = 0\]
Solution
The given equation is \[4 x^2 - 2(k + 1)x + (k + 1) = 0\] where a = 4, b = -2(k+1), c = (k+1)
As we know that D = b2 - 4ac
Putting the value of a = 4, b = -2(k+1), c = (k+1)
\[\left\{ - 2(k + 1) \right\}^2 - 4 \times 4 \times (K + 1)\]
\[4(K + 1 )^2 - 16(K + 1)\]
\[(K + 1)\left\{ 4(K + 1) - 16 \right\}\]
\[(K + 1)(4K - 12)\]
\[4(K + 1)(K - 3)\]
For real and equal roots D = 0
\[4\left( K + 1 \right)\left( K - 3 \right) = 0\]
\[K = - 1 \text { or } k = 3\]
Therefore, the value of
APPEARS IN
RELATED QUESTIONS
Solve the following quadratic equations by factorization:
`(x-3)/(x+3)-(x+3)/(x-3)=48/7` , x ≠ 3, x ≠ -3
Let us find two natural numbers which differ by 3 and whose squares have the sum 117.
Determine two consecutive multiples of 3, whose product is 270.
Solve:
`1/p + 1/q + 1/x = 1/(x + p + q)`
Solve the following equation : `"ax"^2 + (4"a"^2 - 3"b")"x" - 12"ab" = 0`
Solve the following quadratic equation using formula method only
x2 - 6x + 4 = 0
Solve equation using factorisation method:
`(x - 3)/(x + 3) + (x + 3)/(x - 3) = 2 1/2`
Let ∆ ABC ∽ ∆ DEF and their areas be respectively, 64 cm2 and 121 cm2. If EF = 15⋅4 cm, find BC.
A car covers a distance of 400 km at a certain speed. Had the speed been 12 km/hr more, the time taken for the journey would have been 1 hour 40 minutes less. Find the original speed of the car.
For equation `1/x + 1/(x - 5) = 3/10`; one value of x is ______.