English
Maharashtra State BoardSSC (English Medium) 9th Standard

In ΔPQR, If PQ > PR and bisectors of ∠Q and ∠R intersect at S. Show that SQ > SR. - Geometry

Advertisements
Advertisements

Question

In ΔPQR, If PQ > PR and bisectors of ∠Q and ∠R intersect at S. Show that SQ > SR.

Sum

Solution

Given: In ΔPQR, PQ > PR and bisectors of ∠Q and ∠R intersect at S.

To prove: SQ > SR

Proof:

∠SQR = `1/2` ∠PQR        ...(i) ...[Ray QS bisects ∠PQR]

∠SRQ = `1/2` ∠PRQ         ...(ii)  ...[Ray RS bisects ∠PRQ]

In ∆PQR,

PQ > PR         ...[Given]

∴ ∠R > ∠Q        ....[Angle opposite to greater side is greater.]

∴  `1/2 ("∠R") > 1/2 ("∠Q")       ...["Multiplying both sides by" 1/2]`

∴ ∠SRQ > ∠SQR         ...(iii)   ...[From (i) and (ii)]

In ∆SQR,

∠SRQ > ∠SQR       ...[From (iii)]

∴ SQ > SR        ...[Side opposite to greater angle is greater]

shaalaa.com
Angle Bisector Theorem
  Is there an error in this question or solution?
Chapter 3: Triangles - Problem Set 3 [Page 49]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×