Advertisements
Advertisements
Question
In the equation 2x – y = 2 if x = 3, then find y = ?
Solution
Substituting x = 3 in 2x – y = 2,
we get 2(3) – y = 2
∴ 6 – y = 2
∴ y = 6 – 2
∴ y = 4
APPEARS IN
RELATED QUESTIONS
If the point (3, 2) lies on the graph of the equation 5x + ay = 19, then find a.
Solve the following pair of linear equations by the substitution method.
`(3x)/2 - (5y)/3 = -2`
`x/y+y/2 = 13/6`
Form the pair of linear equations for the following problem and find their solution by substitution method.
The coach of a cricket team buys 7 bats and 6 balls for ₹ 3800. Later, she buys 3 bats and 5 balls for ₹ 1750. Find the cost of each bat and each ball.
Solve the following systems of equations:
7(y + 3) − 2(x + 2) = 14
4(y − 2) + 3(x − 3) = 2
Solve the following systems of equations:
`x/7 + y/3 = 5`
`x/2 - y/9 = 6`
Solve the following systems of equations:
`15/u + 2/v = 17`
Solve the following systems of equations:
`1/(5x) + 1/(6y) = 12`
`1/(3x) - 3/(7y) = 8, x ~= 0, y != 0`
Solve the following systems of equations:
`6/(x + y) = 7/(x - y) + 3`
`1/(2(x + y)) = 1/(3(x - y))`, where x + y ≠ 0 and x – y ≠ 0
Solve the following systems of equations:
`"xy"/(x + y) = 6/5`
`"xy"/(y- x) = 6`
Solve the following systems of equations:
`2/(3x + 2y) + 3/(3x - 2y) = 17/5`
`5/(3x + 2y) + 1/(3x - 2y) = 2`
5 pens and 6 pencils together cost Rs 9 and 3 pens and 2 pencils cost Rs 5. Find the cost of
1 pen and 1 pencil.
4 tables and 3 chairs, together, cost Rs 2,250 and 3 tables and 4 chairs cost Rs 1950. Find the cost of 2 chairs and 1 table.
On selling a T.V. at 5%gain and a fridge at 10% gain, a shopkeeper gains Rs 2000. But if he sells the T.V. at 10% gain and the fridge at 5% loss. He gains Rs 1500 on the transaction. Find the actual prices of T.V. and fridge.
Solve the following system of equations by eliminating ‘y’ (by substitution) :
2x + y = 0
17x – 11y – 8 = 0
Solve the following system of equations by eliminating ‘y’ (by substitution) :
3x – y = 3
7x + 2y = 20
Solve the following set of simultaneous equation.
2y - x = 0; 10x + 15y = 105
If x + 2y = 5 and 2x + y = 7, then find the value of x + y
A train covered a certain distance at a uniform speed. If the train would have been 6 km/h faster, it would have taken 4 hours less than the scheduled time. And, if the train was slower by 6 km/h it would have taken 6 hours more than the scheduled time. Find the length of the journey.