Advertisements
Advertisements
Question
In the given figure, diameters AC and BD of the circle intersect at O. If ∠AOB = 60° and OA = 10 cm, then:
- find the length of the chord AB.
- find the area of shaded region.
(Take π = 3.14 and `sqrt3 = 1.73`)
Solution
Given, OA = 10 cm
AC & BD are diameters that intersect at O
Hence, O is the center
⇒ OA = OB = OC = 10 cm
and ∠AOB = 60°
⇒ ∠ABO = ∠BAO = `(120^circ)/2 = 60^circ` ...[∵ OA = OB ⇒ ∠OAB = ∠OBA]
Hence, ΔOAB = equilateral triangle
i. So AB = OA = OB = 10 cm ...(Sides of equilateral triangle)
ii. Area of shaded region = sector area (OBPC) + [Sector area OAQB − area of ΔOAB]
= `[(120^circ)/(360^circ) xx pi xx 10^2 + (60^circ)/(360^circ) xx pi xx 10^2 - sqrt3/4 xx 10^2]` cm2
= `((180^circ)/(360^circ) xx pi xx 100 - sqrt3/4 xx 100)` cm2
= `(50pi - sqrt3/4 xx 100)` cm2
= (50 × 3.14 − 1.73 × 25) cm2
= 157 cm2 − 43.25 cm2
= 113.75 cm2
Hence, Required shaded area = 113.75 cm2