English
Maharashtra State BoardSSC (English Medium) 9th Standard

In the given figure, line DE || line GF, ray EG and ray FG are bisectors of ∠DEF and ∠DFM respectively. Prove that, i. ∠DEG = EDF12∠EDF ii. EF = FG - Geometry

Advertisements
Advertisements

Question

In the given figure, line DE || line GF, ray EG and ray FG are bisectors of ∠DEF and ∠DFM respectively. Prove that, 

  1. ∠DEG = `1/2∠"EDF"`
  2. EF = FG

Sum

Solution

(i) ∠DEG = ∠FEG = x°      ...(i)[Ray EG bisects ∠DEF]

∠GFD = ∠GFM = y°      ...(ii)[Ray FG bisects ∠DFM]

line DE || line GF and DF is their transversal.      ...[Given]

∴ ∠EDF = ∠GFD           ...[Alternate angles]

∴ ∠EDF = y°                   ...(iii) [From (ii)] 

line DE || line GF and EM is their transversal.     ...[Given]

∴ ∠DEF = ∠GFM                       ...[Corresponding angles]

∴ ∠DEG + ∠FEG = ∠GFM       ...[Angle addition property]

∴ x° + x° = y°                               ...[From (i) and (ii)]

∴ 2x° = y°

∴ x° = `1/2`y°

∴ ∠DEG = `1/2`∠EDF               ...[From (i) and (iii)]

(ii) line DE || line GF and GE is their transversal.    ...[Given]

∴ ∠DEG = ∠FGE             ...(iv)[Alternate angles]

∴ ∠FEG = x°              ...(v)[From (i) and (iv)]

∴ In ∆FEG,

∠FEG = ∠FGE               ...[From (v)]

∴ EF = FG                    ...[Converse of isosceles triangle theorem]

shaalaa.com
Remote Interior Angles of a Triangle Theorem
  Is there an error in this question or solution?
Chapter 3: Triangles - Practice Set 3.1 [Page 28]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×