Advertisements
Advertisements
Question
किसी विद्यालय के 600 विद्यार्थियों के सर्वेक्षण से ज्ञात हुआ कि 150 विद्यार्थी चाय, 225 विद्यार्थी कॉफी तथा 100 विद्यार्थी चाय और कॉफी दोनों पीते हैं। ज्ञात कीजिए कि कितने विद्यार्थी न तो चाय पीते हैं और न कॉफी पीते हैं।
Solution
मान लीजिए T और C चाय तथा कॉफी पीने वाले विद्यार्थियों के समुच्चय हों, तब
n(T) = 150, n(C) = 225, n(T ∩ C) = 100
n(T ∪ C) = n(T) + n(C) – n(T ∩ C)
= 150 + 225 – 100
= 275
= उन विद्यार्थियों की संख्या जो चाय या कॉफी पीते हैं या चाय और कॉफी दोनों पीते हैं।
विद्यार्थियों की कुल संख्या = 600
∴ उन विद्यार्थियों की संख्या जो चाय या कॉफी कुछ भी नहीं पीते
= 600 – 275 = 325.
APPEARS IN
RELATED QUESTIONS
पहचानें कि निम्नलिखित समुच्चय है या नहीं? अपने उत्तर का औचित्य बताइए।
J अक्षर से प्रारंभ होने वाले वर्ष के सभी महीनों का संग्रह।
पहचानें कि निम्नलिखित समुच्चय है या नहीं? अपने उत्तर का औचित्य बताइए।
भारत के दस सबसे अधिक प्रतिभाशाली लेखकों का संग्रह।
पहचानें कि निम्नलिखित समुच्चय है या नहीं? अपने उत्तर का औचित्य बताइए।
100 से कम सभी प्राकृत संख्याओं का संग्रह।
पहचानें कि निम्नलिखित समुच्चय है या नहीं? अपने उत्तर का औचित्य बताइए।
सभी सम पूर्णांकों का संग्रह।
मान लीजिए A = {1, 2, 3, 4, 5, 6}, रिक्त स्थान में उपयुक्त प्रतीक ∈ अथवा ∉ भरिए।
8 _____ A
मान लीजिए A = {1, 2, 3, 4, 5, 6}, रिक्त स्थान में उपयुक्त प्रतीक ∈ अथवा ∉ भरिए।
4 _____ A
मान लीजिए A = {1, 2, 3, 4, 5, 6}, रिक्त स्थान में उपयुक्त प्रतीक ∈ अथवा ∉ भरिए।
2 _____ A
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए:
C = {x : x दो अंको की ऐसी प्राकृत संख्या है जिसके अंकों का योगफल 8 है।}
निम्नलिखित समुच्चय को समुच्चय निर्माण रूप में व्यक्त कीजिए:
{3, 6, 9, 12}
निम्नलिखित समुच्चय को समुच्चय निर्माण रूप में व्यक्त कीजिए:
{2, 4, 8, 16, 32}
निम्नलिखित समुच्चय को समुच्चय निर्माण रूप में व्यक्त कीजिए:
{5, 25, 125, 625}
निम्नलिखित समुच्चय को समुच्चय निर्माण रूप में व्यक्त कीजिए:
{2, 4, 6, ….}
निम्नलिखित समुच्चय को समुच्चय निर्माण रूप में व्यक्त कीजिए:
{1, 4, 9, ....., 100}
बाईं ओर रोस्टर रूप में लिखित और दाईं ओर समुच्चय निर्माण रूप में वर्णित समुच्चयों का सही मिलान कीजिए:
(i) | {1, 2, 3, 6} | (a) | {x : x एक अभाज्य संख्या है और 6 की भाजक है} |
(ii) | {2, 3} | (b) | {x : x संख्या 10 से कम एक विषम प्राकृत संख्या है} |
(iii) | {M, A, T, H, E, I, C, S} | (c) | {x : x एक प्राकृत संख्या है और 6 की भाजक है} |
(iv) | {1, 3, 5, 7, 9} | (d) | {x : x MATHEMATICS शब्द का एक अक्षर है} |
यदि A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} और D = {7, 8, 9, 10}, तो निम्नलिखित ज्ञात कीजिए:
B ∪ C ∪ D
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए।
A = {x | x; 10 से छोटा एक धन पूर्णांक है और 2x - 1 एक विषम संख्या है}
बताइए कि निम्नलिखित कथन में से कौन से कथन सत्य और कौन से असत्य है। अपने उत्तर का औचित्य भी बतलाइए।
7,747 संख्या ∈ {t | t, 37 का गुणज (multiple) है}
मान लीजिए कि X = {1, 2, 3, 4, 5, 6} यदि n, X के किसी सदस्य को निरूपित करता है, तो निम्नलिखित को समुच्चय रूप में व्यक्त कीजिए
n ∈ X, परंतु 2n ∉ X
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए:
A = {x : x ∈ R, 2x + 11 = 15}
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए:
B = {x | x2 = x, x ∈ R}
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए:
C = {x | x अभाज्य संख्या p का एक धनात्मक गुणनखंड है}
बताइए कि निम्नलिखित कथन में से कौन सत्य और कौन असत्य है। अपने उत्तर का औचित्य भी बताइए।
दिया है कि X = {1, 2, 3}, यदि n समुच्चय के X किसी सदस्य को निरूपित करता है, तो निम्नलिखित द्वारा निरूपित समस्त संख्याओं को अंतर्विष्ट (Contain) करने वाले समुच्चयों को लिखिए:
दिया है कि X = {1, 2, 3}, यदि n समुच्चय के X किसी सदस्य को निरूपित करता है, तो निम्नलिखित द्वारा निरूपित समस्त संख्याओं को अंतर्विष्ट (Contain) करने वाले समुच्चयों को लिखिए:
यदि Y = {1, 2, 3, … 10}, तथा a समुच्चय Y के किसी अवयव को निरूपित करता है, तो उन समुच्चयों को लिखिए जिनके अंतर्विष्ट समस्त अवयव निम्नलिखित प्रतिबंधों (Conditions) को संतुष्ट करते हैं:
a ∈ Y परंतु a2 ∉ Y
यदि Y = {1, 2, 3, … 10}, तथा a समुच्चय Y के किसी अवयव को निरूपित करता है, तो उन समुच्चयों को लिखिए जिनके अंतर्विष्ट समस्त अवयव निम्नलिखित प्रतिबंधों (Conditions) को संतुष्ट करते हैं:
a + 1 = 6, a ∈ Y
यदि Y = {1, 2, 3, … 10}, तथा a समुच्चय Y के किसी अवयव को निरूपित करता है, तो उन समुच्चयों को लिखिए जिनके अंतर्विष्ट समस्त अवयव निम्नलिखित प्रतिबंधों (Conditions) को संतुष्ट करते हैं: