Advertisements
Advertisements
Question
कोई दुकानदार पढ़ने के लिए पुस्तकें किराए पर देता है। वह प्रथम दो दिन के लिए एक निश्चित शुल्क लेता है और उसके बाद प्रत्येक दिन के लिए एक अतिरिक्त शुल्क लेता है। लतिका ने एक पुस्तक छः दिन तक रखने के लिए 22 रु दिए, जबकि आनंद ने एक पुस्तक चार दिन तक रखने के लिए 16 रु दिए। निश्चित शुल्क तथा प्रत्येक दिन का अतिरिक्त शुल्क ज्ञात कीजिए।
Solution
माना पहले दो दिन के लिए निर्धारित शुल्क ₹ x है।
और उसके बाद प्रत्येक दिन के लिए अतिरिक्त शुल्क ₹ y है।
अब पहली शर्त से,
लतिका ने छह दिनों तक रखी एक किताब के लिए ₹ 22 का भुगतान किया।
अर्थात्, x + 4y = 22......(i)
और दूसरी शर्त से,
आनंद ने चार दिनों तक रखी एक किताब के लिए ₹ 16 का भुगतान किया।
अर्थात्, x + 2y = 16 ......(ii)
अब, समीकरण (i) से समीकरण (ii) घटाने पर, हमें प्राप्त होता है
2y = 6
⇒ y = 3
समीकरण (ii) में y का मान डालने पर हमें प्राप्त होता है
x + 2 × 3 = 16
⇒ x = 16 – 6 = 10
अत:, निश्चित शुल्क = ₹ 10
और प्रत्येक अतिरिक्त दिन का शुल्क = ₹ 3
APPEARS IN
RELATED QUESTIONS
निम्न रैखिक समीकरण युग्म को प्रतिस्थापन विधि से हल कीजिए:
`sqrt2x + sqrt3y = 0`
`sqrt3x - sqrt8y = 0`
निम्न रैखिक समीकरण युग्म को प्रतिस्थापन विधि से हल कीजिए:
`(3x)/2 - (5y)/3 = -2`
`x/3 + y/2 = 13/6`
निम्न समस्या में रैखिक समीकरण युग्म बनाइए और उनके हल प्रतिस्थापन विधि द्वारा ज्ञात कीजिए:
दो संख्याओं का अंतर 26 है और एक संख्या दूसरी संख्या की तीन गुनी है। उन्हें ज्ञात कीजिए।
निम्न समस्या में रैखिक समीकरण युग्म बनाइए और उनके हल प्रतिस्थापन विधि द्वारा ज्ञात कीजिए:
एक नगर में टैक्सी के भाड़े में एक नियत भाड़े के अतिरिक्त चली गई दुरी पर भाड़ा सम्मिलित किया जाता है। 10 km दुरी के लिए भाड़ा ₹ 105 है तथा 15 km के लिए भाड़ा ₹ 155 है। नियत भाड़ा तथा प्रति km भाड़ा क्या है? एक व्यक्ति को 25 km यात्रा करने के लिए कितना भाड़ा देना होगा?
निम्न समीकरण के युग्म को विलोपन विधि तथा प्रतिस्थापना विधि से हल कीजिए। कौन-सी विधि अधिक उपयुक्त है?
3x + 4y = 10 और 2x - 2y = 2
निम्न रैखिक समीकरणों के युग्म को प्रतिस्थापन एवं व्रज-गुणन विधियों से हल किजीए। किस विधि को आप अधिक उपयुक्त मानते हैं?
8x + 5y = 9
3x + 2y = 4
अरुणा के पास केवल 1 रु और 2 रु के सिक्के हैं यदि उसके पास कुल 50 सिक्के हैं तथा कुल धनराशि 75 रु है तो 1 रु और 2 रु के सिक्कों की संख्याएँ क्रमश : हैं ______।
पिता की आयु पुत्र की आयु की 6 गुनी है। चार वर्ष के बाद, पिता की आयु अपने पुत्र की आयु की चार गुनी होगी। पुत्र और पिता की वर्तमान आयु (वर्षो में) क्रमशः ______।
यदि 2x3 + ax2 + 2bx + 1 का एक गुणनखंड x + 1 है, तो a और b के मान ज्ञात कीजिए, जब कि 2a – 3b = 4 दिया हुआ है।
दो परीक्षा कक्षों A और B में कुछ विद्यार्थी हैं। दोनों कक्षों में विद्यार्थियों की संख्याएँ बराबर करने के लिए, A से B में 10 विद्यार्थी भेजे जाते हैं। परंतु यदि B से 20 विद्यार्थी A में भेज दिए जाएँ, तो A में विद्यार्थियों की संख्या B के विद्यार्थियों की संख्या की दुगुनी हो जाती है। दोनों कक्षों में विद्यार्थियों की संख्या ज्ञात कीजिए।