Advertisements
Chapters
![NCERT Exemplar solutions for Mathematics [Hindi] Class 10 chapter 3 - दो चरों वाले रैखिक समीकरणों का युग्म NCERT Exemplar solutions for Mathematics [Hindi] Class 10 chapter 3 - दो चरों वाले रैखिक समीकरणों का युग्म - Shaalaa.com](/images/mathematics-hindi-class-10_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
Advertisements
Solutions for Chapter 3: दो चरों वाले रैखिक समीकरणों का युग्म
Below listed, you can find solutions for Chapter 3 of CBSE NCERT Exemplar for Mathematics [Hindi] Class 10.
NCERT Exemplar solutions for Mathematics [Hindi] Class 10 3 दो चरों वाले रैखिक समीकरणों का युग्म प्रश्नावली 3.1 [Pages 19 - 21]
दिए हुए चार विकल्पों में से सही उत्तर चुनिए :
आलेखीय रूप से,
6x – 3y + 10 = 0
2x – y + 9 = 0
समीकरणों का युग्म दो रेखाएँ निरूपित करता है, जो ______ ।
ठीक एक बिंदु पर प्रतिच्छेद करती हैं
ठीक दो बिंदुओं पर प्रतिच्छेद करती हैं
संपाती हैं
समांतर हैं
समीकरण x + 2y + 5 = 0 और – 3x – 6y + 1 = 0 के युग्म ______।
का एक अद्वितीय हल है
के ठीक दो हल हैं
के अपरिमित रूप से अनेक हल हैं
का कोई हल नहीं है
यदि रैखिक समीकरणों का कोई युग्म संगत है, तो इसके आलेख की रेखाएँ होंगी ______।
समांतर
सदैव संपाती
प्रतिच्छेदी या संपाती
सदैव प्रतिच्छेदी
समीकरण y = 0 और y = –7 के युग्म ______।
का एक हल है
के दो हल हैं
अपरिमित रूप से अनेक हल हैं
का कोई हल नहीं है
समीकरण x = a और y = b का युग्म आलेखीय रूप से वे रेखाएँ निरूपित करता है, जो ______।
समांतर हैं
(b, a) पर प्रतिच्छेद करती हैं
संपाती हैं
(a, b) पर प्रतिच्छेद करती हैं
k के किस मान के लिए समीकरण 3x – y + 8 = 0 और 6x – ky =16 संपाती रेखाएँ निरूपित करते हैं?
`1/2`
`-1/2`
2
–2
यदि 3x + 2ky = 2 और 2x + 5y + 1 = 0 द्वारा दी जाने वाली रेखाएँ परस्पर समांतर हैं, तो k ______।
`(-5)/4`
`2/5`
`15/4`
`3/2`
c का वह मान, जिसके लिए समीकरणों cx – y = 2 और 6x – 2y = 3 के युग्म के अपरिमित रूप से अनेक हल होंगे, है ______।
3
–3
–12
कोई मान नहीं
आश्रित रैखिक समीकरणों के युग्म का एक समीकरण –5x + 7y = 2 है दूसरा समीकरण हो ______।
10x + 14y + 4 = 0
–10x – 14y + 4 = 0
–10x + 14y + 4 = 0
10x – 14y = –4
एक अद्वितीय हल x = 2, y = –3 वाले समीकरण का एक युग्म है ______।
x + y = –1, 2x – 3y = –5
2x + 5y = –11, 4x + 10y = –22
2x – y = 1, 3x + 2y = 0
x – 4y –14 = 0, 5x – y – 13 = 0
यदि x = a और y = b समीकरणों x – y = 2 और x + y = 4, का हल है, तो a और b के मान क्रमश : हैं ______।
3 और 5
5 और 3
3 और 1
–1 और –3
अरुणा के पास केवल 1 रु और 2 रु के सिक्के हैं यदि उसके पास कुल 50 सिक्के हैं तथा कुल धनराशि 75 रु है तो 1 रु और 2 रु के सिक्कों की संख्याएँ क्रमश : हैं ______।
35 और 15
35 और 20
15 और 35
25 और 25
पिता की आयु पुत्र की आयु की 6 गुनी है। चार वर्ष के बाद, पिता की आयु अपने पुत्र की आयु की चार गुनी होगी। पुत्र और पिता की वर्तमान आयु (वर्षो में) क्रमशः ______।
4 और 24
5 और 30
6 और 36
3 और 24
NCERT Exemplar solutions for Mathematics [Hindi] Class 10 3 दो चरों वाले रैखिक समीकरणों का युग्म प्रश्नावली 3.2 [Pages 22 - 23]
क्या समीकरणों के निम्नलिखित युग्म का कोई हल नहीं है? अपने उत्तर का औचित्य दीजिए।
2x + 4y = 3, 12y + 6x = 6
क्या समीकरणों के निम्नलिखित युग्म का कोई हल नहीं है? अपने उत्तर का औचित्य दीजिए।
x = 2y, y = 2x
क्या समीकरणों के निम्नलिखित युग्म का कोई हल नहीं है? अपने उत्तर का औचित्य दीजिए।
`3x + y - 3 = 0, 2x + 2/3y` = 2
क्या निम्नलिखित समीकरण संपाती रेखाओं का एक युग्म निरूपित करती है? अपने उत्तर का औचित्य दीजिए।
`3x + 1/7y = 3, 7x + 3y = 7`
क्या निम्नलिखित समीकरण संपाती रेखाओं का एक युग्म निरूपित करती है? अपने उत्तर का औचित्य दीजिए।
–2x – 3y = 1, 6y + 4x = – 2
क्या निम्नलिखित समीकरण संपाती रेखाओं का एक युग्म निरूपित करती है? अपने उत्तर का औचित्य दीजिए।
क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।
–3x – 4y = 12, 4y + 3x = 12
क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।
क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।
2ax + by = a, 4ax + 2by – 2a = 0; a, b ≠ 0
क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।
x + 3y = 11, 2(2x + 6y) = 22
समीकरण λx + 3y = –7, 2x + 6y = 14 के युग्म के अपरिमित रूप से अनेक हल होने के लिए, λ का मान 1 होना चाहिए। क्या यह कथन सत्य है? कारण दीजिए।
c के सभी वास्तविक मानों के लिए समीकरण-युग्म x – 2y = 8, 5x – 10y = c का एक अद्वितीय हल हैऔचित्य के साथ उत्तर दीजिए कि यह सत्य है या असत्य।
सत्य
असत्य
x = 7 द्वारा निरूपित रेखा x अक्ष के समांतर है औचित्य के साथ उत्तर दीजिए कि यह सत्य है या असत्य।
सत्य
असत्य
NCERT Exemplar solutions for Mathematics [Hindi] Class 10 3 दो चरों वाले रैखिक समीकरणों का युग्म प्रश्नावली 3.3 [Pages 26 - 30]
λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म
λx + y = λ2
x + λy = 1
दो चरों वाले रैखिक समीकरणों के युग्म का कोई हल नहीं होगा?
λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म
λx + y = λ2
x + λy = 1
दो चरों वाले रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?
λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म
λx + y = λ2
x + λy = 1
दो चरों वाले रैखिक समीकरणों के युग्म का एक अद्वितीय हल होगा?
k के किस (किन) मान (मानों) के लिए, समीकरण-युग्म
kx + 3y = k – 3
12x + ky = k
का कोई हल नहीं होगा ?
a और b के किन मानों के लिए, निम्नलिखित रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?
x + 2y = 1
(a – b)x + (a + b)y = a + b – 2
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
3x – y – 5 = 0 और 6x – 2y – p = 0,
यदि इन समीकरणों द्वारा निरूपित रेखाएँ समांतर हैं।
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
– x + py = 1 और px – y = 1,
यदि समीकरण-युग्म का कोई हल नहीं है।
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
– 3x + 5y = 7 और 2px – 3y = 1
यदि इन समीकरणों द्वारा निरूपित रेखाएँ एक अद्वितीय बिंदु पर प्रतिच्छेद करती हैं।
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
2x + 3y – 5 = 0 और px – 6y – 8 = 0,
यदि समीकरण-युग्म का एक अद्वितीय हल है।
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
2x + 3y = 7 और 2px + py = 28 – qy,
यदि समीकरण-युग्म के अपरिमित रूप से अनेक हल हैं।
दो सीधे पथ समीकरणों x – 3y = 2 और –2x + 6y = 5 द्वारा निरूपित हैं। जाँच कीजिए कि ये पथ परस्पर काटते हैं या नहीं।
रैखिक समीकरणों का एक ऐसा युग्म लिखिए जिसका एक अद्वितीय हल x = – 1, y = 3 हो। आप ऐसे कितने युग्म लिख सकते हैं?
यदि 2x + y = 23 और 4x – y = 19 है, तो 5y – 2x और `y/x - 2` के मान ज्ञात कीजिए।
निम्नलिखित आयत में x और y के मान ज्ञात कीजिए:
निम्नलिखित समीकरण-युग्म को हल कीजिए:
x + y = 3.3, `0.6/(3x - 2y) = -1, 3x - 2y ≠ 0`
निम्नलिखित समीकरण-युग्म को हल कीजिए:
`x/3 + y/4 = 4, (5x)/6 - y/4 = 4`
निम्नलिखित समीकरण-युग्म को हल कीजिए:
`4x + 6/y = 15, 6x - 8/y = 14, y ≠ 0`
निम्नलिखित समीकरण-युग्म को हल कीजिए:
`1/(2x) - 1/y = -1, 1/x + 1/(2y) = 8, x, y ≠ 0`
निम्नलिखित समीकरण-युग्म को हल कीजिए:
43x + 67y = – 24, 67x + 43y = 24
निम्नलिखित समीकरण-युग्म को हल कीजिए:
निम्नलिखित समीकरण-युग्म को हल कीजिए:
`(2xy)/(x + y) = 3/2, (xy)/(2x - y) = (-3)/10, x + y ≠ 0, 2x - y ≠ 0`
समीकरण `x/10 + y/5 - 1` = 0 और `x/8 + y/6` = 15 के युग्म का हल ज्ञात कीजिए। इसके बाद λ ज्ञात कीजिए, यदि y = λx + 5 है।
आलेखीय विधि से ज्ञात कीजिए कि निम्नलिखित समीकरण युग्म संगत हैं या नहीं। यदि संगत हैं, तो इन्हें हल कीजिए।
3x + y + 4 = 0, 6x – 2y + 4 = 0
आलेखीय विधि से ज्ञात कीजिए कि निम्नलिखित समीकरण युग्म संगत हैं या नहीं। यदि संगत हैं, तो इन्हें हल कीजिए।
x – 2y = 6, 3x – 6y = 0
आलेखीय विधि से ज्ञात कीजिए कि निम्नलिखित समीकरण युग्म संगत हैं या नहीं। यदि संगत हैं, तो इन्हें हल कीजिए।
x + y = 3, 3x + 3y = 9
समीकरण 2x + y = 4 और 2x – y = 4 के युग्म का आलेख खींचिए। इन रेखाओं और y-अक्ष से बनने वाले त्रिभुज के शीर्ष बिंदुओं के निर्देशांक लिखिए। साथ ही, इस त्रिभुज का क्षेत्रफल भी ज्ञात कीजिए।
रैखिक समीकरण x + y = 2 और 2x – y = 1 के युग्म के हल को निरूपित करने वाले बिंदु से होकर जाने वाली एक रेखा की समीकरण ज्ञात कीजिए। हम ऐसी कितनी रेखाएँ ज्ञात कर सकते हैं?
यदि 2x3 + ax2 + 2bx + 1 का एक गुणनखंड x + 1 है, तो a और b के मान ज्ञात कीजिए, जब कि 2a – 3b = 4 दिया हुआ है।
किसी त्रिभुज के कोण x, y और 40° हैं। दोनों कोणों x और y का अंतर 30° है। x और y ज्ञात कीजिए।
दो वर्ष पहले, सलीम की आयु अपनी पुत्री की आयु की तिगुनी थी तथा छः वर्ष बाद उसकी आयु पुत्री की आयु के दुगुने से चार वर्ष अधिक होगी। उनकी वर्तमान आयु क्या है?
पिता की आयु अपने दोनों बच्चों की आयु के योग की दुगुनी है। 20 वर्ष बाद, उसकी आयु अपने बच्चों की आयु के योग के बराबर होगी। पिता की आयु ज्ञात कीजिए।
दो संख्याएँ 5 : 6 के अनुपात में हैं। यदि प्रत्येक संख्या में से 8 घटा दिया जाए, तो यह अनुपात 4 : 5 हो जाता है। ये संख्याएँ ज्ञात कीजिए।
दो परीक्षा कक्षों A और B में कुछ विद्यार्थी हैं। दोनों कक्षों में विद्यार्थियों की संख्याएँ बराबर करने के लिए, A से B में 10 विद्यार्थी भेजे जाते हैं। परंतु यदि B से 20 विद्यार्थी A में भेज दिए जाएँ, तो A में विद्यार्थियों की संख्या B के विद्यार्थियों की संख्या की दुगुनी हो जाती है। दोनों कक्षों में विद्यार्थियों की संख्या ज्ञात कीजिए।
कोई दुकानदार पढ़ने के लिए पुस्तकें किराए पर देता है। वह प्रथम दो दिन के लिए एक निश्चित शुल्क लेता है और उसके बाद प्रत्येक दिन के लिए एक अतिरिक्त शुल्क लेता है। लतिका ने एक पुस्तक छः दिन तक रखने के लिए 22 रु दिए, जबकि आनंद ने एक पुस्तक चार दिन तक रखने के लिए 16 रु दिए। निश्चित शुल्क तथा प्रत्येक दिन का अतिरिक्त शुल्क ज्ञात कीजिए।
किसी प्रतियोगात्मक परीक्षा में प्रत्येक सही उत्तर के लिए 1 अंक दिया जाता है, जब कि प्रत्येक गलत उत्तर के लिए `1/2` अंक काट लिया जाता है। जयंती ने 120 प्रश्नों के उत्तर दिए और 90 अंक प्राप्त किए। उसने कितने प्रश्नों के सही उत्तर दिए ?
एक चक्रीय चतुर्भुज ABCD के कोण हैं:
∠A = (6x + 10)°, ∠B = (5x)°, ∠C = (x + y)° और ∠D = (3y – 10)°
x और y के मान ज्ञात कीजिए और फिर चारों कोणों के मान ज्ञात कीजिए।
NCERT Exemplar solutions for Mathematics [Hindi] Class 10 3 दो चरों वाले रैखिक समीकरणों का युग्म प्रश्नावली 3.4 [Pages 34 - 36]
निम्नलिखित समीकरण-युग्म को आलेखीय रूप से हल कीजिए:
2x + y = 6, 2x – y + 2 = 0
उन दो त्रिभुजों के क्षेत्रफलों का अनुपात ज्ञात कीजिए, जो इन समीकरणों को निरूपित करने वाली रेखाओं द्वारा क्रमश: x-अक्ष और y-अक्ष द्वारा बनाए जाते हैं।
रेखाओं y = x, 3y = x और x + y = 8 से बनने वाले त्रिभुज के शीर्षों के निर्देशांक आलेखीय विधि से निर्धारित कीजिए।
समीकरण x = 3, x = 5 और 2x – y – 4 = 0 के आलेख खींचिए। इन रेखाओं और x-अक्ष द्वारा बनाए गए चतुर्भुज का क्षेत्रफल ज्ञात कीजिए।
4 पेन और 4 पेंसिल बॉक्सों का मूल्य 100 रु है। एक पेन के मूल्य का तीन गुना एक पेंसिल बॉक्स के मूल्य से 15 रु अधिक है। उपरोक्त स्थिति के लिए, रैखिक समीकरणों का एक युग्म बनाइए। एक पेन और एक पेंसिल बॉक्स के मूल्य भी ज्ञात कीजिए।
रेखाओं
3x – y = 3
2x – 3y = 2
x + 2y = 8
से बनने वाले त्रिभुज के शीर्ष बीजीय विधि से निर्धारित कीजिए।
अंकिता अपने घर तक 14 km की दूरी आंशिक रूप से रिक्शा से और आंशिक रूप से बस द्वारा तय करती है। यदि वह 2 km दूरी रिक्शा से तथा शेष दूरी बस से तय करे, तो उसे कुल दूरी चलने में आधा घंटा लगता है। दूसरी ओर, यदि वह 4 km दूरी रिक्शा से और शेष दूरी बस से चले, तो उसे 9 मिनट अधिक लगते हैं। रिक्शा की चाल और बस की चाल ज्ञात कीजिए।
एक व्यक्ति शांत जल में 5 km/h की चाल से नाव खेने पर 40 km की दूरी धारा के प्रतिकूल जाने में उस समय से तिगुना समय लेता है जितना 40 km की दूरी धारा के अनुकूल जाने में लगता है। धारा की चाल ज्ञात कीजिए।
एक मोटरबोट धारा के प्रतिकूल 30 km और धारा के अनुकूल 28 km जाने में 7 घंटे का समय लगाती है। वह धारा के प्रतिकूल 21 km जाकर 5 घंटे में वापस आ सकती है। शांत जल में नाव की चाल और धारा की चाल ज्ञात कीजिए।
दो अंकों की एक संख्या या तो अंकों के योग को 8 से गुणा कर और फिर उसमें से 5 घटा कर प्राप्त होती है या अंकों के अंतर को 16 से गुणा करके और फिर उसमें 3 जोड़ने पर प्राप्त होती है। वह संख्या ज्ञात कीजिए।
रेल के एक आधे टिकट के लिए, पूरे किराए का आधा तथा आरक्षण शुल्क उतना ही देना पड़ता है जितना पूरे टिकट के लिए देना होता है। स्टेशन A से स्टेशन B तक के लिए एक प्रथम श्रेणी के आरक्षित टिकट की लागत 2530 रु है। साथ ही, A से B तक के लिए, एक प्रथम श्रेणी टिकट और एक प्रथम श्रेणी आधे टिकट की लागत 3810 रु है। स्टेशन A से स्टेशन B तक का प्रथम श्रेणी का पूरा किराया ज्ञात कीजिए तथा साथ ही एक टिकट पर आरक्षण शुल्क भी ज्ञात कीजिए।
एक दुकानदार ने एक साड़ी 8% लाभ पर और एक स्वेटर 10% बट्टे पर बेचा, जिससे उसे 1008 रु की धनराशि प्राप्त हुई। यदि उसने साड़ी 10% लाभ और स्वेटर को 8% बट्टे पर बेचा होता, तो उसे 1028 रु की धनराशि प्राप्त होती। साड़ी का क्रय मूल्य और स्वेटर का सूची मूल्य (बट्टे से पहले का मूल्य) ज्ञात कीजिए।
सुषान ने कोई धनराशि दो योजनाओं A और B में निवेशित की, जो क्रमश: 8% और 9% वार्षिक ब्याज देती हैं। उसे कुल वार्षिक ब्याज के रूप में 1860 रु प्राप्त हुए। परंतु यदि उसने इन योजनाओं में निवेशित राशियों को परस्पर बदल लिया होता, तो उसे वार्षिक ब्याज के रूप में 20 रु अधिक प्राप्त होते। उसने प्रत्येक योजना में कितनी राशि निवेशित की?
विजय के पास कुछ केले थे और उसने उन्हें दो समूहों (ढेरियों) A एवं B में विभाजित कर लिया। उसने पहले समूह के केलों को 2 रु के 3 केले की दर से बेचा तथा दूसरे समूह के केलों को 1 रु प्रति केले की दर से बेचा और कुल 400 रु प्राप्त किए। यदि उसने पहले समूह के केलों को 1 रु प्रति केले की दर से बेचा होता तथा दूसरे समूह के केलों को 4 रु के 5 केले की दर से बेचा होता, तो उसे कुल 460 रु प्राप्त होते। ज्ञात कीजिए कि उसके पास कुल कितने केले थे।
Solutions for 3: दो चरों वाले रैखिक समीकरणों का युग्म
![NCERT Exemplar solutions for Mathematics [Hindi] Class 10 chapter 3 - दो चरों वाले रैखिक समीकरणों का युग्म NCERT Exemplar solutions for Mathematics [Hindi] Class 10 chapter 3 - दो चरों वाले रैखिक समीकरणों का युग्म - Shaalaa.com](/images/mathematics-hindi-class-10_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
NCERT Exemplar solutions for Mathematics [Hindi] Class 10 chapter 3 - दो चरों वाले रैखिक समीकरणों का युग्म
Shaalaa.com has the CBSE Mathematics Mathematics [Hindi] Class 10 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT Exemplar solutions for Mathematics Mathematics [Hindi] Class 10 CBSE 3 (दो चरों वाले रैखिक समीकरणों का युग्म) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT Exemplar textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [Hindi] Class 10 chapter 3 दो चरों वाले रैखिक समीकरणों का युग्म are भूमिका: दो चर वाले रैखिक समीकरण युग्म, दो चरों में रैखिक समीकरण युग्म, रैखिक समीकरण युग्म का ग्राफीय विधि से हल, एक रैखिक समीकरण युग्म को हल करने की बीजगणित विधि, प्रतिस्थापन विधि, विलोपन विधि, वज्र-गुणन विधि, दो चरों के रैखिक समीकरणों के युग्म में बदले जा सकने वाले समीकरण.
Using NCERT Exemplar Mathematics [Hindi] Class 10 solutions दो चरों वाले रैखिक समीकरणों का युग्म exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Exemplar Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [Hindi] Class 10 students prefer NCERT Exemplar Textbook Solutions to score more in exams.
Get the free view of Chapter 3, दो चरों वाले रैखिक समीकरणों का युग्म Mathematics [Hindi] Class 10 additional questions for Mathematics Mathematics [Hindi] Class 10 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.