English

C का वह मान, जिसके लिए समीकरणों cx – y = 2 और 6x – 2y = 3 के युग्म के अपरिमित रूप से अनेक हल होंगे, है ______। - Mathematics (गणित)

Advertisements
Advertisements

Question

c का वह मान, जिसके लिए समीकरणों cx – y = 2 और 6x – 2y = 3 के युग्म के अपरिमित रूप से अनेक हल होंगे, है ______।

Options

  • 3

  • –3

  • –12

  • कोई मान नहीं

MCQ
Fill in the Blanks

Solution

c का वह मान, जिसके लिए समीकरणों cx – y = 2 और 6x – 2y = 3 के युग्म के अपरिमित रूप से अनेक हल होंगे, कोई मान नहीं है।

स्पष्टीकरण:

रेखाओं के दिए गए समीकरण cx – y = 2 और 6x – 2y = 3 हैं।

⇒ cx – y – 2 = 0 और 6x – 2y – 3 = 0

यहाँ, a1 = c

b1= –1

c1 = –2

और a2 = 6

b2 = –2

c2 = –3

चूँकि, अपरिमित रूप से अनेक हलों के लिए शर्त है, 

`a_1/a_2 = b_1/b_2 = c_1/c_2`

⇒ `c/6 = (-1)/(-2) = (-2)/(-3)`

⇒ `c/6 = 1/2` और `c/6 = 2/3`

⇒ c = 3 और c = 4

चूंकि, c के अलग-अलग मान हैं।

इसलिए, c का कोई मान मौजूद नहीं है जिसके लिए दिए गए समीकरणों के अपरिमित रूप से अनेक हल हैं। 

shaalaa.com
दो चरों में रैखिक समीकरण युग्म
  Is there an error in this question or solution?
Chapter 3: दो चरों वाले रैखिक समीकरणों का युग्म - प्रश्नावली 3.1 [Page 20]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 3 दो चरों वाले रैखिक समीकरणों का युग्म
प्रश्नावली 3.1 | Q 8. | Page 20

RELATED QUESTIONS

अनुपातों `bb(a_1/a_2, b_1/b_2)` और `(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:

5x - 4y + 8 = 0

7x + 6y - 9 = 0


अनुपातों `a_1/a_2, b_1/b_2` और `c_1/c_2` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:

6x - 3y + 10 = 0

2x - y + 9 = 0


निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:

ax + by = c

bx + ay = 1 + c


निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:

(a - b)x + (a + b)y = a2 - 2ab - b2

(a + b)(x + y) = a2 + b2


एक अद्वितीय हल x = 2, y = –3 वाले समीकरण का एक युग्म है ______। 


यदि x = a और y = b समीकरणों x – y = 2 और x + y = 4, का हल है, तो a और b के मान क्रमश : हैं ______।


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

– 3x + 5y = 7 और 2px – 3y = 1

यदि इन समीकरणों द्वारा निरूपित रेखाएँ एक अद्वितीय बिंदु पर प्रतिच्छेद करती हैं।


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

2x + 3y – 5 = 0 और px – 6y – 8 = 0,

यदि समीकरण-युग्म का एक अद्वितीय हल है।


दो सीधे पथ समीकरणों x – 3y = 2 और –2x + 6y = 5 द्वारा निरूपित हैं। जाँच कीजिए कि ये पथ परस्पर काटते हैं या नहीं।


4 पेन और 4 पेंसिल बॉक्सों का मूल्य 100 रु है। एक पेन के मूल्य का तीन गुना एक पेंसिल बॉक्स के मूल्य से 15 रु अधिक है। उपरोक्त स्थिति के लिए, रैखिक समीकरणों का एक युग्म बनाइए। एक पेन और एक पेंसिल बॉक्स के मूल्य भी ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×