English

दो सीधे पथ समीकरणों x – 3y = 2 और –2x + 6y = 5 द्वारा निरूपित हैं। जाँच कीजिए कि ये पथ परस्पर काटते हैं या नहीं। - Mathematics (गणित)

Advertisements
Advertisements

Question

दो सीधे पथ समीकरणों x – 3y = 2 और –2x + 6y = 5 द्वारा निरूपित हैं। जाँच कीजिए कि ये पथ परस्पर काटते हैं या नहीं।

Sum

Solution

दिए गए रैखिक समीकरण हैं।

x – 3y – 2 = 0  ......(i)

–2x + 6y – 5 = 0   ......(ii)

ax + by c = 0 से तुलना करने पर, हमें मिलता है।

a1 = 1, b1 = –3, c1 = – 2

a2 = –2, b2 = 6, c2 = – 5

`a_1/a_2 = 1/(-2)`

`b_1/b_2 = (-3)/6 = -1/2`

`c_1/c_2 = 2/5`

i.e., `a_1/a_2 = b_1/b_2 ≠ c_1/c_2`  ......[समांतर रेखाएँ]

इसलिए, दिए गए समीकरणों द्वारा दर्शाए गए दो सीधे रास्ते कभी भी एक-दूसरे को नहीं काटते, क्योंकि वे एक-दूसरे के समानांतर होते हैं।

shaalaa.com
दो चरों में रैखिक समीकरण युग्म
  Is there an error in this question or solution?
Chapter 3: दो चरों वाले रैखिक समीकरणों का युग्म - प्रश्नावली 3.3 [Page 27]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 3 दो चरों वाले रैखिक समीकरणों का युग्म
प्रश्नावली 3.3 | Q 5. | Page 27

RELATED QUESTIONS

अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:

9x + 3y + 12 = 0

18x + 6y + 24 = 0


अनुपातों `a_1/a_2, b_1/b_2` और `c_1/c_2` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:

6x - 3y + 10 = 0

2x - y + 9 = 0


निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:

ax + by = c

bx + ay = 1 + c


c का वह मान, जिसके लिए समीकरणों cx – y = 2 और 6x – 2y = 3 के युग्म के अपरिमित रूप से अनेक हल होंगे, है ______।


आश्रित रैखिक समीकरणों के युग्म का एक समीकरण –5x + 7y = 2 है दूसरा समीकरण हो ______।


एक अद्वितीय हल x = 2, y = –3 वाले समीकरण का एक युग्म है ______। 


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

– x + py = 1 और px – y = 1,

यदि समीकरण-युग्म का कोई हल नहीं है।


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

2x + 3y – 5 = 0 और px – 6y – 8 = 0,

यदि समीकरण-युग्म का एक अद्वितीय हल है।


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

2x + 3y = 7 और 2px + py = 28 – qy,

यदि समीकरण-युग्म के अपरिमित रूप से अनेक हल हैं।


यदि 2x + y = 23 और 4x – y = 19 है, तो 5y – 2x और `y/x - 2`  के मान ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×