English

अनुपातों a1a2,b1b2 और c1c2 की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं: 9x + 3y + 12 = 0 18x + 6y + 24 = 0 - Mathematics (गणित)

Advertisements
Advertisements

Question

अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:

9x + 3y + 12 = 0

18x + 6y + 24 = 0

Sum

Solution

9x + 3y + 12 = 0    ...(1)

18x + 6y + 24 = 0   ...(2)

a1 = 9, b1 = 3, c1 = 12

a2 = 18, b2 = 6, c2 = 24

`a_1/a_2 = 9/18, b_1/b_2 = 3/6, c_1/c_2 = 12/24`

यहाँ, `9/18 = 3/6 = 12/24 = 1/2`

∴ `a_1/a_2 = b_1/b_2 = c_1/c_2`

अतः जब `a_1/a_2 = b_1/b_2 = c_1/c_2` हो तो दिए गए समीकरण युग्म के लिए रेखाएँ संपाती होती है। अतः संपाती है।

shaalaa.com
दो चरों में रैखिक समीकरण युग्म
  Is there an error in this question or solution?
Chapter 3: दो चरों वाले रैखिक समीकरण का युग्म - प्रश्नावली 3.2 [Page 55]

APPEARS IN

NCERT Mathematics [Hindi] Class 10
Chapter 3 दो चरों वाले रैखिक समीकरण का युग्म
प्रश्नावली 3.2 | Q 2. (ii) | Page 55

RELATED QUESTIONS

आफ़ताब अपनी पुत्री से कहता है, 'सात वर्ष पूर्व मैं तुमसे सात गुनी आयु का था। अब से 3 वर्ष बाद मैं तुमसे केवल तीन गुनी आयु का रह जाऊँगा। (क्या यह मनोरंजक है?)' इस स्थिति को बीजगणितीय एवं ग्राफीय रूपों में व्यक्त कीजिए।


अनुपातों `a_1/a_2, b_1/b_2` और `c_1/c_2` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:

6x - 3y + 10 = 0

2x - y + 9 = 0


निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:

px + qy = p - q

qx - py = p + q


निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:

(a - b)x + (a + b)y = a2 - 2ab - b2

(a + b)(x + y) = a2 + b2


c का वह मान, जिसके लिए समीकरणों cx – y = 2 और 6x – 2y = 3 के युग्म के अपरिमित रूप से अनेक हल होंगे, है ______।


एक अद्वितीय हल x = 2, y = –3 वाले समीकरण का एक युग्म है ______। 


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

– 3x + 5y = 7 और 2px – 3y = 1

यदि इन समीकरणों द्वारा निरूपित रेखाएँ एक अद्वितीय बिंदु पर प्रतिच्छेद करती हैं।


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

2x + 3y – 5 = 0 और px – 6y – 8 = 0,

यदि समीकरण-युग्म का एक अद्वितीय हल है।


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

2x + 3y = 7 और 2px + py = 28 – qy,

यदि समीकरण-युग्म के अपरिमित रूप से अनेक हल हैं।


दो सीधे पथ समीकरणों x – 3y = 2 और –2x + 6y = 5 द्वारा निरूपित हैं। जाँच कीजिए कि ये पथ परस्पर काटते हैं या नहीं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×