English

निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए : 3x – y – 5 = 0 और 6x – 2y – p = 0, यदि इन समीकरणों द्वारा निरूपित रेखाएँ समांतर हैं। - Mathematics (गणित)

Advertisements
Advertisements

Question

निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

3x – y – 5 = 0 और 6x – 2y – p = 0,

यदि इन समीकरणों द्वारा निरूपित रेखाएँ समांतर हैं।

Sum

Solution

रैखिक समीकरणों का दिया गया युग्म है।

3x – y – 5 = 0  ......(i)

6x – 2y – p = 0   ......(ii)

ax + by + c = 0 से तुलना करने पर, हमें मिलता है।

a1 = 3, b1 = – 1, c1 = – 5

a2 = 6, b2 = – 2, c2 = – p

`a_1/a_2 = 3/6 = 1/2`

`b_1/b_2 = 1/2`

`c_1/c_2 = 5/p`

चूँकि, इन समीकरणों द्वारा निरूपित रेखाएँ समानांतर हैं, तब

`a_1/a_2 = b_1/b_2 ≠ c_1/c_2`

पिछले दो भागों को लेने पर, हम प्राप्त करते हैं  `1/2 ≠ 5/p`

तो, p ≠ 10

अत:, 10 को छोड़कर p के सभी वास्तविक मानों के लिए रैखिक समीकरणों का दिया गया युग्म समानांतर है।

shaalaa.com
दो चरों में रैखिक समीकरण युग्म
  Is there an error in this question or solution?
Chapter 3: दो चरों वाले रैखिक समीकरणों का युग्म - प्रश्नावली 3.3 [Page 27]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 3 दो चरों वाले रैखिक समीकरणों का युग्म
प्रश्नावली 3.3 | Q 4. (i) | Page 27

RELATED QUESTIONS

अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:

9x + 3y + 12 = 0

18x + 6y + 24 = 0


निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:

px + qy = p - q

qx - py = p + q


निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:

ax + by = c

bx + ay = 1 + c


निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:

(a - b)x + (a + b)y = a2 - 2ab - b2

(a + b)(x + y) = a2 + b2


c का वह मान, जिसके लिए समीकरणों cx – y = 2 और 6x – 2y = 3 के युग्म के अपरिमित रूप से अनेक हल होंगे, है ______।


एक अद्वितीय हल x = 2, y = –3 वाले समीकरण का एक युग्म है ______। 


यदि x = a और y = b समीकरणों x – y = 2 और x + y = 4, का हल है, तो a और b के मान क्रमश : हैं ______।


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

2x + 3y = 7 और 2px + py = 28 – qy,

यदि समीकरण-युग्म के अपरिमित रूप से अनेक हल हैं।


दो सीधे पथ समीकरणों x – 3y = 2 और –2x + 6y = 5 द्वारा निरूपित हैं। जाँच कीजिए कि ये पथ परस्पर काटते हैं या नहीं।


यदि 2x + y = 23 और 4x – y = 19 है, तो 5y – 2x और `y/x - 2`  के मान ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×