Advertisements
Advertisements
प्रश्न
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
3x – y – 5 = 0 और 6x – 2y – p = 0,
यदि इन समीकरणों द्वारा निरूपित रेखाएँ समांतर हैं।
उत्तर
रैखिक समीकरणों का दिया गया युग्म है।
3x – y – 5 = 0 ......(i)
6x – 2y – p = 0 ......(ii)
ax + by + c = 0 से तुलना करने पर, हमें मिलता है।
a1 = 3, b1 = – 1, c1 = – 5
a2 = 6, b2 = – 2, c2 = – p
`a_1/a_2 = 3/6 = 1/2`
`b_1/b_2 = 1/2`
`c_1/c_2 = 5/p`
चूँकि, इन समीकरणों द्वारा निरूपित रेखाएँ समानांतर हैं, तब
`a_1/a_2 = b_1/b_2 ≠ c_1/c_2`
पिछले दो भागों को लेने पर, हम प्राप्त करते हैं `1/2 ≠ 5/p`
तो, p ≠ 10
अत:, 10 को छोड़कर p के सभी वास्तविक मानों के लिए रैखिक समीकरणों का दिया गया युग्म समानांतर है।
APPEARS IN
संबंधित प्रश्न
आफ़ताब अपनी पुत्री से कहता है, 'सात वर्ष पूर्व मैं तुमसे सात गुनी आयु का था। अब से 3 वर्ष बाद मैं तुमसे केवल तीन गुनी आयु का रह जाऊँगा। (क्या यह मनोरंजक है?)' इस स्थिति को बीजगणितीय एवं ग्राफीय रूपों में व्यक्त कीजिए।
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
`x/a - y/b = 0`
ax + by = a2 + b2
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
152x - 378y = -74
-378x + 152y = -604
c का वह मान, जिसके लिए समीकरणों cx – y = 2 और 6x – 2y = 3 के युग्म के अपरिमित रूप से अनेक हल होंगे, है ______।
आश्रित रैखिक समीकरणों के युग्म का एक समीकरण –5x + 7y = 2 है दूसरा समीकरण हो ______।
एक अद्वितीय हल x = 2, y = –3 वाले समीकरण का एक युग्म है ______।
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
2x + 3y – 5 = 0 और px – 6y – 8 = 0,
यदि समीकरण-युग्म का एक अद्वितीय हल है।
दो सीधे पथ समीकरणों x – 3y = 2 और –2x + 6y = 5 द्वारा निरूपित हैं। जाँच कीजिए कि ये पथ परस्पर काटते हैं या नहीं।
यदि 2x + y = 23 और 4x – y = 19 है, तो 5y – 2x और `y/x - 2` के मान ज्ञात कीजिए।
4 पेन और 4 पेंसिल बॉक्सों का मूल्य 100 रु है। एक पेन के मूल्य का तीन गुना एक पेंसिल बॉक्स के मूल्य से 15 रु अधिक है। उपरोक्त स्थिति के लिए, रैखिक समीकरणों का एक युग्म बनाइए। एक पेन और एक पेंसिल बॉक्स के मूल्य भी ज्ञात कीजिए।