Advertisements
Advertisements
प्रश्न
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
152x - 378y = -74
-378x + 152y = -604
उत्तर
चूँकि 152x - 378y = -74
⇒ 152x - 378y + 74 = 0 ….(1)
एवं -378x + 152y = -604
⇒ -378x + 152y + 604 = 0 ….(2)
⇒ `x/(-378(604) - 152(74)) = y/(74(-378) - 604(152)) = 1/(152(152) - (-378)(-378))`
⇒ `(-x)/(378(604) + 152(74)) = (-y)/(74(378) + 604(152)) = (-1)/((378)^2 - (152)^2)`
⇒ `x/(378(604) + 152(74)) = y/(74(378) + 604(152)) = 1/((378 + 152) xx (378 - 152))`
⇒ `x/(378(604) + 152(74)) = y/(74(378) + 604(152)) = 1/(530 xx 226`
⇒ `x = (378 xx 604 + 152 xx 74)/(530 xx 226) = (228312 + 11248)/(119780)`
= `239560/119780 = 2`
एवं `y = (74 xx 378 + 604 xx 152)/(530 xx 226)`
= `(27972 + 91808)/(119780) = 119780/119780 = 1`
अतः दत्त समीकरण युग्म का अभीष्ट हल x = 2 एवं y = 1 है।
APPEARS IN
संबंधित प्रश्न
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:
5x - 4y + 8 = 0
7x + 6y - 9 = 0
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:
9x + 3y + 12 = 0
18x + 6y + 24 = 0
अनुपातों `a_1/a_2, b_1/b_2` और `c_1/c_2` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:
6x - 3y + 10 = 0
2x - y + 9 = 0
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
ax + by = c
bx + ay = 1 + c
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
`x/a - y/b = 0`
ax + by = a2 + b2
c का वह मान, जिसके लिए समीकरणों cx – y = 2 और 6x – 2y = 3 के युग्म के अपरिमित रूप से अनेक हल होंगे, है ______।
आश्रित रैखिक समीकरणों के युग्म का एक समीकरण –5x + 7y = 2 है दूसरा समीकरण हो ______।
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
– x + py = 1 और px – y = 1,
यदि समीकरण-युग्म का कोई हल नहीं है।
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
2x + 3y – 5 = 0 और px – 6y – 8 = 0,
यदि समीकरण-युग्म का एक अद्वितीय हल है।
दो सीधे पथ समीकरणों x – 3y = 2 और –2x + 6y = 5 द्वारा निरूपित हैं। जाँच कीजिए कि ये पथ परस्पर काटते हैं या नहीं।