Advertisements
Advertisements
Question
दो वर्ष पहले, सलीम की आयु अपनी पुत्री की आयु की तिगुनी थी तथा छः वर्ष बाद उसकी आयु पुत्री की आयु के दुगुने से चार वर्ष अधिक होगी। उनकी वर्तमान आयु क्या है?
Solution
माना सलीम और उसकी पुत्री की आयु क्रमशः x वर्ष और y वर्ष है।
अब, पहली शर्त से,
दो वर्ष पूर्व, सलीम की आयु उसकी पुत्री की आयु की तीन गुनी थी।
अर्थात, x – 2 = 3(y – 2)
⇒ x – 2 = 3y – 6
⇒ x – 3y = – 4 ......(i)
और दूसरी शर्त से,
छह वर्ष बाद, सलीम अपनी आयु के दोगुने से चार वर्ष बड़ा होगा।
x + 6 = 2(y + 6) + 4
⇒ x + 6 = 2y + 12 + 4
⇒ x – 2y = 16 – 6
⇒ x – 2y = 10 ......(ii)
समीकरण (ii) से समीकरण (i) घटाने पर, हमें प्राप्त होता है।
x – 2y = 10
x – 3y = – 4
– + +
y = 14
समीकरण (ii) में y का मान रखें, हमें मिलता है।
x – 2 × 14 = 10
⇒ x = 10 + 28
⇒ x = 38
अतः, सलीम और उसकी पुत्री की आयु क्रमशः 38 वर्ष और 14 वर्ष है।
APPEARS IN
RELATED QUESTIONS
निम्न रैखिक समीकरण युग्म को प्रतिस्थापन विधि से हल कीजिए:
x + y = 14
x - y = 4
निम्न समस्या में रैखिक समीकरण युग्म बनाइए और उनके हल प्रतिस्थापन विधि द्वारा ज्ञात कीजिए:
दो संख्याओं का अंतर 26 है और एक संख्या दूसरी संख्या की तीन गुनी है। उन्हें ज्ञात कीजिए।
निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उनके हल (यदि उनका अस्तित्व हो) किसी बीजगणितीय विधि से ज्ञात कीजिए:
एक छात्रावास के मासिक व्यय का एक भाग नियत है तथा शेष इस पर निर्भर करता है कि छात्र ने कितने दिन भोजन लिया है। जब एक विद्यार्थी A को, जो 20 दिन भोजन करता है, ₹ 1000 छात्रावास के व्यय के लिए अदा करने पड़ते हैं, जबकि एक विद्यार्थी B को, जो 26 दिन भोजन करता है छात्रावास के व्यय के लिए ₹ 1180 अदा करने पड़ते हैं। नियत व्यय और प्रतिदिन के भोजन का मूल्य ज्ञात कीजिए।
निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उनके हल (यदि उनका अस्तित्व हो) किसी बीजगणितीय विधि से ज्ञात कीजिए:
एक राजमार्ग पर दो स्थान A और B, 100 km की दुरी पर हैं। एक कार A से तथा दूसरी कार B से एक ही समय चलना प्रारम्भ करती है। यदि ये कारें भिन्न-भिन्न चालों से एक ही दिशा में चलती हैं, तो वे 5 घंटे पश्चात् मिलती हैं, यदि वे विपरीत दिशा में चलती हैं, तो एक घंटे के पश्चात मिलती हैं। दोनों कारों की चाल ज्ञात कीजिए।
निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उनके हल (यदि उनका अस्तित्व हो) किसी बीजगणितीय विधि से ज्ञात कीजिए:
एक आयत का क्षेत्रफल 9 वर्ग इकाई कम हो जाता है, यदि उसकी लंबाई 5 इकाई कम कर दी जाती है और चौड़ाई 3 इकाई बढ़ा दी जाती है। यदि हम लंबाई को 3 इकाई और चौड़ाई को 2 इकाई बढ़ा दें, तो क्षेत्रफल 67 वर्ग इकाई बढ़ जाता है। आयत की विमाएँ ज्ञात कीजिए।
पिता की आयु पुत्र की आयु की 6 गुनी है। चार वर्ष के बाद, पिता की आयु अपने पुत्र की आयु की चार गुनी होगी। पुत्र और पिता की वर्तमान आयु (वर्षो में) क्रमशः ______।
यदि 2x3 + ax2 + 2bx + 1 का एक गुणनखंड x + 1 है, तो a और b के मान ज्ञात कीजिए, जब कि 2a – 3b = 4 दिया हुआ है।
दो संख्याएँ 5 : 6 के अनुपात में हैं। यदि प्रत्येक संख्या में से 8 घटा दिया जाए, तो यह अनुपात 4 : 5 हो जाता है। ये संख्याएँ ज्ञात कीजिए।
दो परीक्षा कक्षों A और B में कुछ विद्यार्थी हैं। दोनों कक्षों में विद्यार्थियों की संख्याएँ बराबर करने के लिए, A से B में 10 विद्यार्थी भेजे जाते हैं। परंतु यदि B से 20 विद्यार्थी A में भेज दिए जाएँ, तो A में विद्यार्थियों की संख्या B के विद्यार्थियों की संख्या की दुगुनी हो जाती है। दोनों कक्षों में विद्यार्थियों की संख्या ज्ञात कीजिए।
कोई दुकानदार पढ़ने के लिए पुस्तकें किराए पर देता है। वह प्रथम दो दिन के लिए एक निश्चित शुल्क लेता है और उसके बाद प्रत्येक दिन के लिए एक अतिरिक्त शुल्क लेता है। लतिका ने एक पुस्तक छः दिन तक रखने के लिए 22 रु दिए, जबकि आनंद ने एक पुस्तक चार दिन तक रखने के लिए 16 रु दिए। निश्चित शुल्क तथा प्रत्येक दिन का अतिरिक्त शुल्क ज्ञात कीजिए।