Advertisements
Advertisements
Question
λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म
λx + y = λ2
x + λy = 1
दो चरों वाले रैखिक समीकरणों के युग्म का एक अद्वितीय हल होगा?
Solution
रैखिक समीकरणों का दिया गया युग्म है।
λx + y = λ2 and x + λy = 1
a1 = λ, b1 = 1, c1 = – λ2
a2 = 1, b2 = λ, c2 = –1
दिए गए समीकरण हैं।
λx + y – λ2 = 0
x + λy – 1 = 0
उपरोक्त समीकरणों की तुलना ax + by + c = 0 से करें
हमें मिलता है,
a1 = λ, b1 = 1, c1 = – λ2
a2 = 1, b2 = λ, c2 = – 1
`a_1/a_2 = λ/1`
`b_1/b_2 = 1/λ`
`c_1/c_2` = λ2
एक अनूठे समाधान के लिए,
`a_1/a_2 ≠ b_1/b_2`
तो `λ ≠ 1/λ`
अत: λ2 ≠ 1
तो, ±1 को छोड़कर λ के सभी वास्तविक मान।
APPEARS IN
RELATED QUESTIONS
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरण के युग्म संगत हैं या असंगत:
2x - 3y = 8; 4x - 6y = 9
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरण के युग्म संगत हैं या असंगत:
`3/2x + 5/3y = 7`; 9x - 10y = 14
निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।
x + y = 5, 2x + 2y = 10
निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।
x - y = 8, 3x - 3y = 16
क्या समीकरणों के निम्नलिखित युग्म का कोई हल नहीं है? अपने उत्तर का औचित्य दीजिए।
x = 2y, y = 2x
क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।
–3x – 4y = 12, 4y + 3x = 12
क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।
x + 3y = 11, 2(2x + 6y) = 22
a और b के किन मानों के लिए, निम्नलिखित रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?
x + 2y = 1
(a – b)x + (a + b)y = a + b – 2
आलेखीय विधि से ज्ञात कीजिए कि निम्नलिखित समीकरण युग्म संगत हैं या नहीं। यदि संगत हैं, तो इन्हें हल कीजिए।
x + y = 3, 3x + 3y = 9
समीकरण x = 3, x = 5 और 2x – y – 4 = 0 के आलेख खींचिए। इन रेखाओं और x-अक्ष द्वारा बनाए गए चतुर्भुज का क्षेत्रफल ज्ञात कीजिए।