English

निम्नलिखित समीकरण-युग्म को हल कीजिए: 43x + 67y = – 24, 67x + 43y = 24 - Mathematics (गणित)

Advertisements
Advertisements

Question

निम्नलिखित समीकरण-युग्म को हल कीजिए:

43x + 67y = – 24, 67x + 43y = 24

Sum

Solution

दिया गया रैखिक समीकरणों का युग्म है।

43x + 67y = – 24   ......(i)

और 67x + 43y = 24   ......(ii)

समीकरण (i) को 43 से और समीकरण (ii) को 67 से गुणा करने और फिर दोनों को घटाने पर, हमें प्राप्त होता है।

(67)2x + 43 × 67y = 24 × 67
(43)2x + 43 × 67y = – 24 × 43
–              –                   +            
    {(67)2 – (43)2}x = 24(67 + 43)

⇒ (67 + 43)(67 – 43)x = 24 × 110  ......[∵ (a2 – b2) = (a – b)(a + b)]

⇒ 110 × 24x = 24 × 110

⇒ x = 1

अब, x का मान समीकरण (i) में रखें, हमें मिलता है।

43 × 1 + 67y = – 24

⇒ 67y = – 24 – 43

⇒ 67y = – 67

⇒ y = – 1

इसलिए, x और y के अभीष्ट मान क्रमशः 1 और –1 हैं।

shaalaa.com
एक रैखिक समीकरण युग्म को हल करने की बीजगणित विधि - वज्र-गुणन विधि
  Is there an error in this question or solution?
Chapter 3: दो चरों वाले रैखिक समीकरणों का युग्म - प्रश्नावली 3.3 [Page 28]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 3 दो चरों वाले रैखिक समीकरणों का युग्म
प्रश्नावली 3.3 | Q 9. (v) | Page 28

RELATED QUESTIONS

निम्न रैखिक समीकरणों के युग्मों में से किसका एक अद्वितीय हल है, किसका कोई हल नहीं है या किसके अपरिमित रूप से अनेक हल हैं। अद्वितीय हल की स्थिति में, उसे व्रज-गुणन विधि से ज्ञात कीजिए।

2x + y = 5

3x + 2y = 8


निम्न रैखिक समीकरणों के युग्मों में से किसका एक अद्वितीय हल है, किसका कोई हल नहीं है या किसके अपरिमित रूप से अनेक हल हैं। अद्वितीय हल की स्थिति में, उसे व्रज-गुणन विधि से ज्ञात कीजिए।

3x - 5y = 20

6x - 10y = 40


निम्न रैखिक समीकरणों के युग्मों में से किसका एक अद्वितीय हल है, किसका कोई हल नहीं है या किसके अपरिमित रूप से अनेक हल हैं। अद्वितीय हल की स्थिति में, उसे व्रज-गुणन विधि से ज्ञात कीजिए।

x - 3y - 7 = 0

3x - 3y - 15 = 0


निम्नलिखित आयत में x और y के मान ज्ञात कीजिए:


निम्नलिखित समीकरण-युग्म को हल कीजिए:

`4x + 6/y = 15, 6x - 8/y = 14, y ≠ 0`


निम्नलिखित समीकरण-युग्म को हल कीजिए:

`(2xy)/(x + y) = 3/2, (xy)/(2x - y) = (-3)/10,  x + y ≠ 0, 2x - y ≠ 0`


किसी प्रतियोगात्मक परीक्षा में प्रत्येक सही उत्तर के लिए 1 अंक दिया जाता है, जब कि प्रत्येक गलत उत्तर के लिए  `1/2` अंक काट लिया जाता है। जयंती ने 120 प्रश्नों के उत्तर दिए और 90 अंक प्राप्त किए। उसने कितने प्रश्नों के सही उत्तर दिए ?


दो अंकों की एक संख्या या तो अंकों के योग को 8 से गुणा कर और फिर उसमें से 5 घटा कर प्राप्त होती है या अंकों के अंतर को 16 से गुणा करके और फिर उसमें 3 जोड़ने पर प्राप्त होती है। वह संख्या ज्ञात कीजिए।


रेल के एक आधे टिकट के लिए, पूरे किराए का आधा तथा आरक्षण शुल्क उतना ही देना पड़ता है जितना पूरे टिकट के लिए देना होता है। स्टेशन A से स्टेशन B तक के लिए एक प्रथम श्रेणी के आरक्षित टिकट की लागत 2530 रु है। साथ ही, A से B तक के लिए, एक प्रथम श्रेणी टिकट और एक प्रथम श्रेणी आधे टिकट की लागत 3810 रु है। स्टेशन A से स्टेशन B तक का प्रथम श्रेणी का पूरा किराया ज्ञात कीजिए तथा साथ ही एक टिकट पर आरक्षण शुल्क भी ज्ञात कीजिए।


एक दुकानदार ने एक साड़ी 8% लाभ पर और एक स्वेटर 10% बट्टे पर बेचा, जिससे उसे 1008 रु की धनराशि प्राप्त हुई। यदि उसने साड़ी 10% लाभ और स्वेटर को 8% बट्टे पर बेचा होता, तो उसे 1028 रु की धनराशि प्राप्त होती। साड़ी का क्रय मूल्य और स्वेटर का सूची मूल्य (बट्टे से पहले का मूल्य) ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×