English

क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए। 35x-y=12,15x-3y=16 - Mathematics (गणित)

Advertisements
Advertisements

Question

क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।

35x-y=12,15x-3y=16
Sum

Solution

रैखिक समीकरण युग्म के सुसंगत होने की शर्तें हैं:

a1a2b1b2 ......[अनोखा समाधान]

a1a2=b1b2=c1c2......[संयोग या अनंत अनेक समाधान]

हाँ।

रैखिक समीकरणों की दी गई जोड़ी

(35)x-y=12

(15)x-3y=16

उपरोक्त समीकरणों की तुलना ax + by + c = 0 से करें

हमें मिलता है,

a1=35,b1=-1,c1=-12

a2=15,b2=3,c2=-16

a1a2 = 3

b1b2=-1-3=13

c1c2 = 3

यहाँ, a1a2b1b2

इसलिए, दिए गए रैखिक समीकरण युग्म का अद्वितीय समाधान है, यानी सुसंगत।

shaalaa.com
रैखिक समीकरण युग्म का ग्राफीय विधि से हल
  Is there an error in this question or solution?
Chapter 3: दो चरों वाले रैखिक समीकरणों का युग्म - प्रश्नावली 3.2 [Page 22]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 3 दो चरों वाले रैखिक समीकरणों का युग्म
प्रश्नावली 3.2 | Q 3. (ii) | Page 22

RELATED QUESTIONS

2 kg सेब और 1 kg अंगूर का मूल्य किसी दिन ₹ 160 था। एक महीने बाद 4 kg सेब और दो kg अंगूर का मूल्य ₹ 300 हो जाता है। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।


एक रैखिक समीकरण 2x + 3y - 8 = 0 दी गई है। दो चरों में एक ऐसी और रैखिक समीकरण लिखिए ताकि प्राप्त युग्म का ज्यामितीय निरूपण जैसा कि

  1. प्रतिच्छेद करती रेखाएँ हों।
  2. समांतर रेखाएँ हों।
  3. संपाती रेखाएँ हों।

समीकरणों x - y + 1 = 0 और 3x + 2y - 12 = 0 का ग्राफ खींचिए। x - अक्ष और इन रेखाओं से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए और त्रिभुजाकार पटल को छायांकित कीजिए।


समीकरणों 5x - y = 5 और 3x - y = 3 के ग्राफ खींचिए। इन रेखाओं और y-अक्ष से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए। इस प्रकार बने त्रिभुज के क्षेत्रफल का परिकलन कीजिए।


क्या समीकरणों के निम्नलिखित युग्म का कोई हल नहीं है? अपने उत्तर का औचित्य दीजिए।

x = 2y, y = 2x


क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।

x + 3y = 11, 2(2x + 6y) = 22


λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म 

λx + y = λ

x + λy = 1

दो चरों वाले रैखिक समीकरणों के युग्म का कोई हल नहीं होगा?


रैखिक समीकरण x + y = 2 और 2x – y = 1 के युग्म के हल को निरूपित करने वाले बिंदु से होकर जाने वाली एक रेखा की समीकरण ज्ञात कीजिए। हम ऐसी कितनी रेखाएँ ज्ञात कर सकते हैं?


रेखाओं y = x, 3y = x और x + y = 8 से बनने वाले त्रिभुज के शीर्षों के निर्देशांक आलेखीय विधि से निर्धारित कीजिए।


λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म 

λx + y = λ2 

x + λy = 1

दो चरों वाले रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.