मराठी

क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए। 35x-y=12,15x-3y=16 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।

`3/5x - y = 1/2, 1/5x - 3y = 1/6`
बेरीज

उत्तर

रैखिक समीकरण युग्म के सुसंगत होने की शर्तें हैं:

`a_1/a_2 ≠ b_1/b_2` ......[अनोखा समाधान]

`a_1/a_2 = b_1/b_2 = c_1/c_2`......[संयोग या अनंत अनेक समाधान]

हाँ।

रैखिक समीकरणों की दी गई जोड़ी

`(3/5)x - y = 1/2`

`(1/5)x - 3y = 1/6`

उपरोक्त समीकरणों की तुलना ax + by + c = 0 से करें

हमें मिलता है,

`a_1 = 3/5, b_1 = -1, c_1 = -1/2`

`a_2 = 1/5, b_2 = 3, c_2 = -1/6`

`a_1/a_2` = 3

`b_1/b_2 = (-1)/-3 = 1/3`

`c_1/c_2` = 3

यहाँ, `a_1/a_2 ≠ b_1/b_2`

इसलिए, दिए गए रैखिक समीकरण युग्म का अद्वितीय समाधान है, यानी सुसंगत।

shaalaa.com
रैखिक समीकरण युग्म का ग्राफीय विधि से हल
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: दो चरों वाले रैखिक समीकरणों का युग्म - प्रश्नावली 3.2 [पृष्ठ २२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 3 दो चरों वाले रैखिक समीकरणों का युग्म
प्रश्नावली 3.2 | Q 3. (ii) | पृष्ठ २२

संबंधित प्रश्‍न

क्रिकेट टीम के एक कोच ने ₹ 3900 में 3 बल्ले तथा 6 गेंदें खरीदीं। बाद में उसने एक और बल्ला तथा उसी प्रकार की 3 गेंदें ₹ 1300 में खरीदीं। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।


2 kg सेब और 1 kg अंगूर का मूल्य किसी दिन ₹ 160 था। एक महीने बाद 4 kg सेब और दो kg अंगूर का मूल्य ₹ 300 हो जाता है। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।


निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उनके ग्राफीय विधि से हल ज्ञात कीजिए।

5 पेंसिल तथा 7 कलमों का कुल मूल्य ₹ 50 है, जबकि 7 पेंसिल तथा 5 कलमों का कुल मूल्य ₹ 46 है। एक पेंसिल का मूल्य तथा एक कलम मूल्य ज्ञात कीजिए।


अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरण के युग्म संगत हैं या असंगत:

`4/3x + 2y = 8`; 2x + 3y = 12


एक रैखिक समीकरण 2x + 3y - 8 = 0 दी गई है। दो चरों में एक ऐसी और रैखिक समीकरण लिखिए ताकि प्राप्त युग्म का ज्यामितीय निरूपण जैसा कि

  1. प्रतिच्छेद करती रेखाएँ हों।
  2. समांतर रेखाएँ हों।
  3. संपाती रेखाएँ हों।

समीकरणों 5x - y = 5 और 3x - y = 3 के ग्राफ खींचिए। इन रेखाओं और y-अक्ष से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए। इस प्रकार बने त्रिभुज के क्षेत्रफल का परिकलन कीजिए।


क्या समीकरणों के निम्नलिखित युग्म का कोई हल नहीं है? अपने उत्तर का औचित्य दीजिए।

2x + 4y = 3, 12y + 6x = 6


आलेखीय विधि से ज्ञात कीजिए कि निम्नलिखित समीकरण युग्म संगत हैं या नहीं। यदि संगत हैं, तो इन्हें हल कीजिए।

x + y = 3, 3x + 3y = 9


समीकरण 2x + y = 4 और 2x – y = 4 के युग्म का आलेख खींचिए। इन रेखाओं और y-अक्ष से बनने वाले त्रिभुज के शीर्ष बिंदुओं के निर्देशांक लिखिए। साथ ही, इस त्रिभुज का क्षेत्रफल भी ज्ञात कीजिए।


λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म 

λx + y = λ2 

x + λy = 1

दो चरों वाले रैखिक समीकरणों के युग्म का एक अद्वितीय हल होगा?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×