मराठी

2 kg सेब और 1 kg अंगूर का मूल्य किसी दिन ₹ 160 था। एक महीने बाद 4 kg सेब और दो kg अंगूर का मूल्य ₹ 300 हो जाता है। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

2 kg सेब और 1 kg अंगूर का मूल्य किसी दिन ₹ 160 था। एक महीने बाद 4 kg सेब और दो kg अंगूर का मूल्य ₹ 300 हो जाता है। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।

बेरीज

उत्तर

माना एक किलों सेब का मूल्य = x रुपया

और एक किलो अंगूर का मूल्य = y रुपया

अतः बीजगणितीय निरूपण:

2x + y = 160 ...........(1)

4x + 2y = 300 ............(2)

ग्राफीय निरूपण:

समी. (1) से

2x + y = 160

y = 160 - 2x

अब समी. (2) से

4x + 2y = 300

या 2x + y = 150

y = 150 - 2x

 

shaalaa.com
रैखिक समीकरण युग्म का ग्राफीय विधि से हल
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: दो चरों वाले रैखिक समीकरण का युग्म - प्रश्नावली 3.1 [पृष्ठ ४९]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 3 दो चरों वाले रैखिक समीकरण का युग्म
प्रश्नावली 3.1 | Q 3. | पृष्ठ ४९

संबंधित प्रश्‍न

क्रिकेट टीम के एक कोच ने ₹ 3900 में 3 बल्ले तथा 6 गेंदें खरीदीं। बाद में उसने एक और बल्ला तथा उसी प्रकार की 3 गेंदें ₹ 1300 में खरीदीं। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।


निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।

x - y = 8, 3x - 3y = 16


निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।

2x + y - 6 = 0, 4x - 2y - 4 = 0


समीकरणों x - y + 1 = 0 और 3x + 2y - 12 = 0 का ग्राफ खींचिए। x - अक्ष और इन रेखाओं से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए और त्रिभुजाकार पटल को छायांकित कीजिए।


क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।

`3/5x - y = 1/2, 1/5x - 3y = 1/6`

क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।

x + 3y = 11, 2(2x + 6y) = 22


समीकरण λx + 3y = –7, 2x + 6y = 14 के युग्म के अपरिमित रूप से अनेक हल होने के लिए, λ का मान 1 होना चाहिए। क्या यह कथन सत्य है? कारण दीजिए।


c के सभी वास्तविक मानों के लिए समीकरण-युग्म x – 2y = 8, 5x – 10y = c का एक अद्वितीय हल हैऔचित्य के साथ उत्तर दीजिए कि यह सत्य है या असत्य।  


k के किस (किन) मान (मानों) के लिए, समीकरण-युग्म

kx + 3y = k – 3

12x + ky = k

का कोई हल नहीं होगा ?


रैखिक समीकरण x + y = 2 और 2x – y = 1 के युग्म के हल को निरूपित करने वाले बिंदु से होकर जाने वाली एक रेखा की समीकरण ज्ञात कीजिए। हम ऐसी कितनी रेखाएँ ज्ञात कर सकते हैं?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×