Advertisements
Advertisements
प्रश्न
क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।
–3x – 4y = 12, 4y + 3x = 12
उत्तर
रैखिक समीकरण युग्म के सुसंगत होने की शर्तें हैं:
`a_1/a_2 ≠ b_1/b_2` ......[अनोखा समाधान]
`a_1/a_2 = b_1/b_2 = c_1/c_2` ......[संयोग या अनंत अनेक समाधान]
नहीं।
रैखिक समीकरणों की दी गई जोड़ी
– 3x – 4y – 12 = 0 और 4y + 3x – 12 = 0
उपरोक्त समीकरणों की तुलना ax + by + c = 0 से करें
हमें मिलता है,
a1 = – 3, b1 = – 4, c1 = – 12
a2 = 3, b2 = 4, c2 = – 12
`a_1/a_2 = - 3/3` = – 1
`b_1/b_2 = - 4/4` = – 1
`c_1 /c_2 = (-12)/-12` = 1
यहाँ, `a_1/a_2 = b_1/b_2 ≠ c_1/c_2`
इसलिए, रैखिक समीकरणों की जोड़ी का कोई हल नहीं है, यानी असंगत है।
APPEARS IN
संबंधित प्रश्न
निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उनके ग्राफीय विधि से हल ज्ञात कीजिए।
5 पेंसिल तथा 7 कलमों का कुल मूल्य ₹ 50 है, जबकि 7 पेंसिल तथा 5 कलमों का कुल मूल्य ₹ 46 है। एक पेंसिल का मूल्य तथा एक कलम मूल्य ज्ञात कीजिए।
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरण के युग्म संगत हैं या असंगत:
5x - 3y = 11; -10x + 6y = -22
निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।
x + y = 5, 2x + 2y = 10
निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।
2x - 2y - 2 = 0, 4x - 4y - 5 = 0
एक रैखिक समीकरण 2x + 3y - 8 = 0 दी गई है। दो चरों में एक ऐसी और रैखिक समीकरण लिखिए ताकि प्राप्त युग्म का ज्यामितीय निरूपण जैसा कि
- प्रतिच्छेद करती रेखाएँ हों।
- समांतर रेखाएँ हों।
- संपाती रेखाएँ हों।
क्या समीकरणों के निम्नलिखित युग्म का कोई हल नहीं है? अपने उत्तर का औचित्य दीजिए।
x = 2y, y = 2x
λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म
λx + y = λ2
x + λy = 1
दो चरों वाले रैखिक समीकरणों के युग्म का कोई हल नहीं होगा?
k के किस (किन) मान (मानों) के लिए, समीकरण-युग्म
kx + 3y = k – 3
12x + ky = k
का कोई हल नहीं होगा ?
रेखाओं y = x, 3y = x और x + y = 8 से बनने वाले त्रिभुज के शीर्षों के निर्देशांक आलेखीय विधि से निर्धारित कीजिए।
λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म
λx + y = λ2
x + λy = 1
दो चरों वाले रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?