Advertisements
Advertisements
Question
क्या समीकरणों के निम्नलिखित युग्म का कोई हल नहीं है? अपने उत्तर का औचित्य दीजिए।
`3x + y - 3 = 0, 2x + 2/3y` = 2
Solution
कोई समाधान न होने की स्थिति = `a_1/a_2 = b_1/b_2 ≠ c_1/c_2` ......(समानांतर रेखाएं)
नहीं।
समीकरणों की जोड़ी दी गई है,
3x + y – 3 = 0
`2x + 2/3y` = 2
समीकरणों की तुलना ax + by + c = 0 से करें
हमें मिलता है,
a1 = 3, b1 = 1, c1 = – 3
a2 = 2, b2 = `2/3`, c2 = – 2
`a_1 /a_2 = 2/6 = 3/2`
`b_1/b_2 = 4/12 = 3/2`
`c_1/c_2 = (-3)/-2 = 3/2`
यहाँ, `a_1/a_2 = b_1/b_2 = c_1/c_2`,
यानी संपाती रेखाएं
APPEARS IN
RELATED QUESTIONS
निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उसके ग्राफीय विधि से हल ज्ञात कीजिए।
कक्षा X के 10 विद्यार्थियों ने एक गणित की पहेली प्रतियोगिता में भाग लिया। यदि लड़कियों की संख्या लड़कों की संख्या से 4 अधिक हो, तो प्रतियोगिता में भाग लिए लड़कों और लड़कियों की संख्या ज्ञात कीजिए।
निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उनके ग्राफीय विधि से हल ज्ञात कीजिए।
5 पेंसिल तथा 7 कलमों का कुल मूल्य ₹ 50 है, जबकि 7 पेंसिल तथा 5 कलमों का कुल मूल्य ₹ 46 है। एक पेंसिल का मूल्य तथा एक कलम मूल्य ज्ञात कीजिए।
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरण के युग्म संगत हैं या असंगत:
2x - 3y = 8; 4x - 6y = 9
क्या निम्नलिखित समीकरण संपाती रेखाओं का एक युग्म निरूपित करती है? अपने उत्तर का औचित्य दीजिए।
`3x + 1/7y = 3, 7x + 3y = 7`
क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।
2ax + by = a, 4ax + 2by – 2a = 0; a, b ≠ 0
समीकरण λx + 3y = –7, 2x + 6y = 14 के युग्म के अपरिमित रूप से अनेक हल होने के लिए, λ का मान 1 होना चाहिए। क्या यह कथन सत्य है? कारण दीजिए।
x = 7 द्वारा निरूपित रेखा x अक्ष के समांतर है औचित्य के साथ उत्तर दीजिए कि यह सत्य है या असत्य।
k के किस (किन) मान (मानों) के लिए, समीकरण-युग्म
kx + 3y = k – 3
12x + ky = k
का कोई हल नहीं होगा ?
λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म
λx + y = λ2
x + λy = 1
दो चरों वाले रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?
λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म
λx + y = λ2
x + λy = 1
दो चरों वाले रैखिक समीकरणों के युग्म का एक अद्वितीय हल होगा?